346 research outputs found

    Asymmetric quantum error correcting codes

    Get PDF
    The noise in physical qubits is fundamentally asymmetric: in most devices, phase errors are much more probable than bit flips. We propose a quantum error correcting code which takes advantage of this asymmetry and shows good performance at a relatively small cost in redundancy, requiring less than a doubling of the number of physical qubits for error correction

    Analysis of reaction and timing attacks against cryptosystems based on sparse parity-check codes

    Full text link
    In this paper we study reaction and timing attacks against cryptosystems based on sparse parity-check codes, which encompass low-density parity-check (LDPC) codes and moderate-density parity-check (MDPC) codes. We show that the feasibility of these attacks is not strictly associated to the quasi-cyclic (QC) structure of the code but is related to the intrinsically probabilistic decoding of any sparse parity-check code. So, these attacks not only work against QC codes, but can be generalized to broader classes of codes. We provide a novel algorithm that, in the case of a QC code, allows recovering a larger amount of information than that retrievable through existing attacks and we use this algorithm to characterize new side-channel information leakages. We devise a theoretical model for the decoder that describes and justifies our results. Numerical simulations are provided that confirm the effectiveness of our approach

    Statistical mechanical analysis of a hierarchical random code ensemble in signal processing

    Full text link
    We study a random code ensemble with a hierarchical structure, which is closely related to the generalized random energy model with discrete energy values. Based on this correspondence, we analyze the hierarchical random code ensemble by using the replica method in two situations: lossy data compression and channel coding. For both the situations, the exponents of large deviation analysis characterizing the performance of the ensemble, the distortion rate of lossy data compression and the error exponent of channel coding in Gallager's formalism, are accessible by a generating function of the generalized random energy model. We discuss that the transitions of those exponents observed in the preceding work can be interpreted as phase transitions with respect to the replica number. We also show that the replica symmetry breaking plays an essential role in these transitions.Comment: 24 pages, 4 figure

    Properties of Classical and Quantum Jensen-Shannon Divergence

    Full text link
    Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the most important divergence measure of information theory, Kullback divergence. As opposed to Kullback divergence it determines in a very direct way a metric; indeed, it is the square of a metric. We consider a family of divergence measures (JD_alpha for alpha>0), the Jensen divergences of order alpha, which generalize JD as JD_1=JD. Using a result of Schoenberg, we prove that JD_alpha is the square of a metric for alpha lies in the interval (0,2], and that the resulting metric space of probability distributions can be isometrically embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a symmetrized and smoothed version of quantum relative entropy and can be extended to a family of quantum Jensen divergences of order alpha (QJD_alpha). We strengthen results by Lamberti et al. by proving that for qubits and pure states, QJD_alpha^1/2 is a metric space which can be isometrically embedded in a real Hilbert space when alpha lies in the interval (0,2]. In analogy with Burbea and Rao's generalization of JD, we also define general QJD by associating a Jensen-type quantity to any weighted family of states. Appropriate interpretations of quantities introduced are discussed and bounds are derived in terms of the total variation and trace distance.Comment: 13 pages, LaTeX, expanded contents, added references and corrected typo

    Statistical mechanics of typical set decoding

    Get PDF
    The performance of ``typical set (pairs) decoding'' for ensembles of Gallager's linear code is investigated using statistical physics. In this decoding, error happens when the information transmission is corrupted by an untypical noise or two or more typical sequences satisfy the parity check equation provided by the received codeword for which a typical noise is added. We show that the average error rate for the latter case over a given code ensemble can be tightly evaluated using the replica method, including the sensitivity to the message length. Our approach generally improves the existing analysis known in information theory community, which was reintroduced by MacKay (1999) and believed as most accurate to date.Comment: 7 page

    Information Theory based on Non-additive Information Content

    Full text link
    We generalize the Shannon's information theory in a nonadditive way by focusing on the source coding theorem. The nonadditive information content we adopted is consistent with the concept of the form invariance structure of the nonextensive entropy. Some general properties of the nonadditive information entropy are studied, in addition, the relation between the nonadditivity qq and the codeword length is pointed out.Comment: 9 pages, no figures, RevTex, accepted for publication in Phys. Rev. E(an error in proof of theorem 1 was corrected, typos corrected

    The Statistical Physics of Regular Low-Density Parity-Check Error-Correcting Codes

    Full text link
    A variation of Gallager error-correcting codes is investigated using statistical mechanics. In codes of this type, a given message is encoded into a codeword which comprises Boolean sums of message bits selected by two randomly constructed sparse matrices. The similarity of these codes to Ising spin systems with random interaction makes it possible to assess their typical performance by analytical methods developed in the study of disordered systems. The typical case solutions obtained via the replica method are consistent with those obtained in simulations using belief propagation (BP) decoding. We discuss the practical implications of the results obtained and suggest a computationally efficient construction for one of the more practical configurations.Comment: 35 pages, 4 figure

    Properties of sparse random matrices over finite fields

    Get PDF
    Typical properties of sparse random matrices over finite (Galois) fields are studied, in the limit of large matrices, using techniques from the physics of disordered systems. For the case of a finite field GF(q) with prime order q, we present results for the average kernel dimension, average dimension of the eigenvector spaces and the distribution of the eigenvalues. The number of matrices for a given distribution of entries is also calculated for the general case. The significance of these results to error-correcting codes and random graphs is also discussed
    corecore