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Abstract. Typical properties of sparse random matrices over finite (Galois) fields are

studied, in the limit of large matrices, using techniques from the physics of disordered

systems. We present results for the average kernel dimension, the number of matrices

for a given distribution of entries, and average dimension of the eigenvector spaces and

the distribution of the eigenvalues. The significance of these results to error-correcting

codes and random graphs is also discussed.
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1. Introduction

Random matrices are ubiquitous in many branches of the natural sciences and

mathematics ranging from biology to computer science, nuclear physics and quantum

chaos. Activity in the area has been recently boosted by the application of techniques

originated in the statistical mechanics of disordered systems [1, 2, 3, 4, 5, 6]. These

techniques have been used to analyse ensemble properties, including variational

techniques and the replica method, have proved to be valuable tools in several of these

approaches. Most of the research concentrates on real matrices, while the restriction to

matrices over GF (q) considered here makes the solution of the problem more involved.

Random matrices over GF (q) are specially important in coding theory [7] where, for

instance, linear codes are defined by the kernel of the so-called parity-check matrix:

each kernel vector defines a codeword to which the original message vector is mapped

by a linear operation, in the form of a product with a generator matrix. Well known

examples include the Hadamard codes, where properties of the kernel and rank play

an important role [8], and low-density parity-check codes (LDPC), which provide the

best performance to date in many noise regimes; parity-check matrices are constructed

using a special case of the sparse matrices studied here. Although the most studied

and applied case of LDPC codes is of binary codes over GF (2) there is a significant

body of work, of both practical and theoretical nature [9], on codes over more general

finite fields showing an improvement in performance with respect to the binary version.

A statistical physics based analysis of LDPC codes over GF (q) has been reported, for

instance, in [10].

In addition to being an interesting applied problem, properties of these matrices

are of great interest from the pure mathematical point of view and a number of papers

have already addressed related questions, in different instances, with a mathematical

rigorous approach [11, 12, 13].

Here, we analyse key typical properties of sparse random matrices over GF (q),

namely the average dimension of their kernel, the average dimension of the eigenvector

spaces, the eigenvalue distributions and the number of matrices for a given connectivity

distribution, all in the case of large matrices. When the M × N matrices are large,

keeping N → ∞ with η = M/N constant, the problem can be mapped into a

system of interacting “spins” by a very useful group homomorphism, and the powerful

methodology developed for the study of disordered spin lattices in condensed matter

physics can then be used, under some assumptions, to obtain the required properties.

In section 2, we generalise a usual statistical physics mapping of systems over the

binary field GF (2) to spin system by means of a group homeomorphism in such a way

that it can be efficiently applied to any GF (q) allowing for the calculation in sections 3

and 5 of kernel and eigenspace properties, respectively, to be carried out. Making use of

these techniques, the number of matrices for a given distribution of non-zero elements is

then obtained for various connectivity profiles, in section 6. In section 4 we discuss the

importance of the results to LDPC error-correcting codes and in section 7 to general
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random graphs. We present a final discussion of the results in section 8.

2. Generalised Mapping of GF (q) onto Spin Systems

A Galois field GF (q) is a finite field with q elements, i.e., a set of q elements

{0, ..., q − 1}, which we symbolise by integers for convenience, which is a commutative

group under addition ⊕ : GF (q) → GF (q), defined as integer addition mod q,

and with a monoid structure with respect to a commutative multiplication operation

⊗ : GF (q) → GF (q). The field also includes the zero element ’0’ and the multiplicative

identity ’1’. The additional requirement that both multiplication and addition have the

algebraic distributive property restricts the number of elements to q = pn, where p is a

prime number and n an integer.

In statistical physics applications to information theory, it is usually convenient to

map binary vectors with entries from the set {0, 1}, into what we call “spin” vectors

with entries from the set {±1}. Given an entry v ∈ {0, 1}, this mapping is usually

accomplished either by the transformation σ(v) = 2v−1 or by σ(v) = (−1)v. Note that

these two transformations are different in the sense that in the former, 0 is mapped to

-1 and 1 is mapped to 1, while in the latter the order is reversed. The second mapping

is much more convenient as it represents a homeomorphism between representations

of GF (2). A further advantage, which we show below, is that this map can also

be generalised to any GF (q) allowing the straightforward use of statistical physics

techniques to a wide range of problems over Galois fields.

The main fact to be noted is that, under the operation of addition ⊕, GF (q) is

homeomorphic to the cyclic group of order q and therefore has a representation as the

complex q-th roots of unity with the group homeomorphism σ : GF (q) → C given by

σ(v) = exp

(

2πi

q
v

)

, (1)

such that for every v1, v2 ∈ GF (q)

σ(v1 ⊕ v2) = exp

[

2πi

q
(v1 ⊕ v2)

]

= exp

[

2πi

q
(v1 + v2)

]

= σ(v1)σ(v2).

(2)

This mapping has a clear geometric interpretation where 2πv/q is an angle in the

unit circle, such that each element of the Galois field is being mapped onto a spin variable

“pointing” in one of q possible directions. Let us denote the inverse of an element v

under addition by −v such that v ⊕ (−v) = 0. Then we also have

σ(v ⊕ (−v)) = σ(0) = 1 ⇒ σ(−v) = [σ(v)]−1, (3)

σ(v ⊕ (−u)) = σ(v)σ(−u) = σ(v)[σ(u)]−1. (4)
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In several applications, including the ones studied in this paper, it turns out to be

necessary to use constraints in the form of Kroenecker deltas like

δ(v, u) = δ(v ⊕ (−u), 0). (5)

Using the above mapping, one can write any constraint of this type in a generalised

way as

δ(v, u) =
1

q

q−1
∏

m=1

[

1 − exp

(

−
2πi

q
m

)

exp

(

2πi

q
v

)

exp

(

−
2πi

q
u

)]

. (6)

Also based on this representation, we can now define the k-point functions of the

spins by

mk ≡
1

N

N
∑

j=1

σj
1 · · ·σ

j
k, (7)

where the lower indices represent k different spin configurations σ1, ...,σk. Note that we

are now working with the spin variables already mapped onto the complex field C and

therefore the operations of multiplication and addition correspond to the usual ones on

C. The first two k-point functions, namely m1 and m2, correspond to the magnetisation

of the spin system and its overlap between two configurations, respectively.

As will become evident in what follows, this kind of representation allows a

factorisation of terms that simplifies the equations and makes replica calculations

simpler.

3. Kernel and Rank

Entries in matrices over GF (q) take values of elements of that finite field, where the usual

additions and multiplications involved in their algebra are defined by the corresponding

operations over the Galois field.

The kernel of an M × N matrix A over GF (q) is a linear space with dimension

dA(0) = logq ΩA(0) where

ΩA(0) =
∑

v

δ(Av, 0), (8)

is the number of vectors in the kernel, δ is the Kroenecker delta and v ∈ GF (q)N .

We term Ts(0) the average kernel dimension density, in the limit of large matrices,

where we also define the entropy density

s(0) ≡
1

T
lim

N→∞

〈dA(0)〉A
N

= lim
N→∞

1

N
〈ln ΩA(0)〉A, (9)

with 1/T = ln q and with the ratio η = M/N being a finite positive constant and 〈·〉A
denotes an average over the corresponding ensemble of random matrices. Using the

replica trick we can write the entropy density as

s(0) = lim
N→∞

[

∂

∂n
ln 〈Ωn

A(0)〉A

]

n=0

. (10)
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We focus our analysis on the class of randomly chosen sparse matrices A having

exactly Ki non-zero elements in the i-th row with probability P(K), K ≡ (K1, ..., KM ),

and Cj elements in the j-th column with probability P(C), C ≡ (C1, ..., CN), obeying

the constraint Λ ≡
∑

i Ki =
∑

j Cj, where Λ is the total number of non-zero elements

of the matrix. We also consider that the elements of A are sampled from the finite field

GF (q) with independent equal probabilities P(Aij).

Using the mapping of GF (q) into spin variables defined in the previous section, the

replicated averaged partition function Zn(0) ≡ 〈Ωn
A(0)〉A can be written as

Zn(0) =

〈

1

N

∑

{Aij}

[

∏

i,j

P(Aij)

][

M
∏

i=1

δ

(

N
∑

j=1

χ(Aij), Ki

)][

N
∏

j=1

δ

(

M
∑

i=1

χ(Aij), Cj

)]

×
n
∏

a=1

[

∑

va

δ(Ava, 0)

]〉

K,C,Λ

,

(11)

where the average is over the probability distribution P(K,C, Λ) with χ(Aij) = 0

if Aij = 0 and 1 otherwise, and the normalisation N gives the number of matrices

which obey the constraints averaged over the distributions of the entries. The replica

calculations to obtain the entropy (9) have already been carried out in a previous

paper [14] and we will only discuss the important results. One important difference

of this approach in comparison to previous similar calculations [15, 16] is that, instead

of defining connectivity tensors and summing over them, here and in [14] we sum directly

over the matrices entries, which makes possible to include general constraints over the

class of random matrices.

Using the rank-nullity theorem, we can define the free energy density f(0) as the

average rank density in the form

f(0) ≡
〈r(A)〉A

N
= 1 − Ts(0), (12)

which implies that the internal energy density of the associated statistical mechanical

model should be constrained to be u = 1. Defining the inverse temperature β = 1/T ,

equation (12) can be written as

βf(0) = −
1

N

〈

ln
∑

v

e−βH(v)

〉

A

, (13)

where a formal Hamiltonian can be written as

H(v) ≡ N − ln δ(Av, 0). (14)

The solution given by the replica calculations [14] has the striking property of

being completely independent of the specific distribution of the individual elements of

the matrix P(Aij), depending only on the distribution of K and C (and, obviously, that
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Figure 1. Average kernel dimension density (continuous lines) and average rank

density (dashed lines) calculated as solutions to the replica symmetric saddle point

equations. The plot shows the thermodynamically favoured analytical solution which

is paramagnetic for 0 ≤ η ≤ 1 and ferromagnetic for η > 1.

of Λ). Analytical solutions cannot be obtained in general and we must rely on numerical

methods to obtain them. However, there exists two straightforward analytical solutions,

the paramagnetic and ferromagnetic states. The paramagnetic solution gives the average

kernel density as Ts(0) = 1 − η = 1 − M/N independently of the order q of the finite

field used, and the ferromagnetic solution gives simply Ts(0) = 0. Figure 1 shows

a plot of the thermodynamically dominant solutions for varying η. We see that the

paramagnetic solution dominates until η = 1, after which it becomes unphysical and

the correct solution is given by the ferromagnetic one.

In [14], numerical solutions for three different distributions of K, C and Λ were

thoroughly studied and, apart from small variations resulting from particular properties

of the distributions, the obtained curves seem to reproduce figure 1.

4. Error Correcting Codes

Low-density parity-check codes are linear codes where the codewords are defined by the

kernel of a random sparse matrix, called the parity-check matrix. In most studies of

LDPC codes, it is assumed that a parity-check matrix with M rows (parity-checks) and

N columns exactly defines a code of rate R = 1 − M/N = 1 − η, which is equivalent to

the assertion that the number of codewords (vector in the kernel) is exactly qNR.

The results of the previous section give us a method to rigorously test this assertion.

Note that when M ≥ N , the code rate, in the case of unbiased messages, would be

negative, which is unphysical. However, our calculations give a clear interpretation for

this case as they show that if η > 1, the dominant solution is the ferromagnetic one with

Ts = 0, implying that the matrix is full rank. As the kernel would be only given by
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the zero message, this incidentally means that such matrices cannot be used to define a

parity-check code due to the lack of redundancy.

However, when η < 1, the dominant solution is paramagnetic and the typical

parity-check matrix defines a code of rate exactly (N −M)/N . This is assumed for any

parity-check matrix in most calculations in the literature and is confirmed by our results

to be true on average; however, it is important to point out that the result is true in

the limit of large matrices and is likely to have finite size corrections which may affect

practical applications.

The application to error correcting codes also gives support to our conjecture that

the dominant solution for η < 1 is the paramagnetic one and for η ≥ 1 it is the

ferromagnetic solution for any distribution. The argument is that the solution of the

kernel dimension is mathematically equivalent to the solution of LDPC in channels with

infinite noise, which then leads to this behaviour. As already mentioned, the numerical

results of [14] seem to support this conjecture, although more careful calculations,

varying all the parameters involved must be carried out to confirm this hypothesis

more generally.

5. Eigenspaces and Eigenvalues

In the case of square M × M matrices, which means that η = 1, we can generalise

equation (8) to count the number of vectors in an eigenspace with eigenvalue λ ∈

{1, ..., q − 1} as

ΩA(λ) =
∑

v

δ(Av, λv), (15)

with obvious analogous generalisations for the kernel dimension density dA(λ), its

average density Ts(λ) and all other quantities from section 3 that depend on λ, the

free energy now being the dimension of the complementary space to the λ-eigenspace.

The replica calculations are very similar to the particular case of the kernel [14].

However, as there are key differences and in order to keep this paper as self-contained as

possible, we reproduce the replica calculations including the appropriate changes to the

eigenspace case in Appendix A. The replica symmetric solution, exact for this problem

as shown in Appendix B, is therefore (for λ 6= 0)

s(λ) = − ln q −
α

M
〈ln [1 + (q − 1)xx̂]〉x,x̂

+
1

Mǫ(α)

∑

i

〈

αΛ

Λ!

〈

ln

{[

1 + (q − 1)

Ki
∏

l=1

xl

]

Ci
∏

l=1

[1 + (q − 1)x̂l]

+ (q − 1)

(

1 −
Ki
∏

l=1

xl

)

Cj
∏

l=1

(1 − x̂l)







〉

x,x̂

〉

K,C,Λ

,

(16)

where now the distributions of the auxiliary fields x and x̂ are slightly more complicated
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than in the kernel case and are given by the saddle point equations

π̂(x̂) =
1

αǫ(α)

M
∑

i=1

〈

αΛ

Λ!
Ki

× δ

(

x̂ −

[

Ki−1
∏

l=1

xl

]

X̂+(Ci) − X̂−(Ci)

X̂+(Ci) + (q − 1)X̂−(Ci)

)〉

x̂,K,C,Λ

, (17)

π(x) =
1

αǫ(α)

M
∑

i=1

〈

αΛ

Λ!
Ci

× δ

(

x −
X+(Ki)X̂

+(Ci − 1) − X−(Ki)X̂
−(Ci − 1)

X+(Ki)X̂+(Ci − 1) + (q − 1)X−(Ki)X̂−(Ci − 1)

)〉

x̂,K,C,Λ

, (18)

0 =

〈

αΛ

Λ!

(

1 −
Λ

α

)〉

K,C,Λ

, (19)

with the following definitions for simplicity

ǫ(α) ≡

〈

αΛ

Λ!

〉

K,C,Λ

, (20)

X̂+(C) ≡
C
∏

l=1

[1 + (q − 1)x̂l], X̂−(C) ≡
C
∏

l=1

(1 − x̂l), (21)

X+(K) ≡ 1 + (q − 1)
K
∏

l=1

xl, X−(K) ≡ 1 −
K
∏

l=1

xl. (22)

The paramagnetic solution

π̂(x̂) = δ(x̂), π(x) = δ(x), (23)

and the ferromagnetic solution

π̂(x̂) = δ(x̂ − 1), π(x) = δ(x − 1). (24)

in terms of the auxiliary fields are the same as for the kernel. Substituting these solutions

into equation (16), we see that the paramagnetic solution gives the result s(λ) = 0 for

every value of λ, which must be discarded as the kernel calculation shows that s(0) = 0

in the square matrix case. The matrix is therefore diagonalisable and the dimension

of the eigenspaces cannot be zero. On the other hand the ferromagnetic solution gives

s(0) = 0 and s(λ) = Λ/M for λ 6= 0, which means that all the non-zero eigenvalues have

eigenspaces with the same dimension given by the average value of non-zero entries per

row or per column (both must be equal). As Λ scales with M ; it gives a finite average

dimension density as expected. This result also implies that the eigenvalue distribution

is just given by

P(λ) = (q − 1)−1, (25)

for λ 6= 0, i.e., all eigenvalues have the same probability.



Properties of Sparse Random Matrices over Finite Fields 9

6. Number of Matrices

The number of GF (q) matrices given a connectivity profile is of significant interest within

the discrete mathematics community. Exact results have been obtained for the case of

finite binary matrices [17] in the form of a formula that facilitates the calculation of their

precise number. Using the same techniques from the previous sections, this number and

its average value can be obtained for large GF (q) matrices. For a given number of non-

zero elements per row K = (K1, ..., KM) and per column C = (C1, ..., CN), the number

of matrices is

NA =
∑

{Aij}

[

M
∏

i=1

δ

(

N
∑

j=1

χ(Aij), Ki

)][

N
∏

j=1

δ

(

M
∑

i=1

χ(Aij), Cj

)]

, (26)

where again we are summing directly over the entries of the matrix instead of over a

connectivity tensor. The detailed calculations where presented in [14] resulting in

NA = (q − 1)Λ Λ!
∏

i Ki!
∏

j Cj!
, (27)

which is just the number of binary matrices with the given non-zero elements profile

times a factor (q − 1)Λ which is the multiplicity of the non-zero entries.

The average number of matrices is then

N̄A =

〈

(q − 1)Λ Λ!
∏

i Ki!
∏

j Cj!

〉

K,C,Λ

=
∑

K

∑

C

P(K|C)P(C)(q − 1)
P

j Cj

(

∑

j Cj

)

!
∏

i Ki!
∏

j Cj!
,

(28)

where the distribution P(K|C) includes the constraint δ
(

∑

i Ki,
∑

j Cj

)

. For a regular

matrix, it is easy to see that this number scales as NCN and a more appropriate quantity

would be the quenched entropy

Ξ ≡

〈

1

N
ln NA

〉

=
1

N

∑

K

∑

C

P(K|C)P(C) ln



(q − 1)
P

j Cj

(

∑

j Cj

)

!
∏

i Ki!
∏

j Cj!



, (29)

scaling as ln N .

A detailed numerical analysis of these formulas for different distributions is also

given in [14]. These studies indicate that if we keep the number of columns constant

and increase the ratio η by adding rows, whenever the number of rows is much larger

than the number of columns, the average number of matrices becomes independent of

both the ratio and number of rows and also suggest that the average number of matrices

in these cases is basically defined by the average value of the C distributions.
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Figure 2. Examples of adjacency matrices. From top to bottom, undirected graphs,

directed graphs and directed weighted graphs.

7. Random Graphs

The results of the previous section can be used to obtain the number and average number

of generalised sparse random graphs. For usual random graphs, directed or undirected,

the adjacency matrix can be written as a binary matrix with a 1 in entry Aij if there

is a link from vertex i to vertex j. If in addition each link is given an integer weight,

the matrix can be viewed as a GF (q) matrix for the sake of counting the graphs. In

figure 2, we give an example of a directed, an undirected and an undirected weighted

graph.

Graphs like the ones in figure 2 can be used in statistical physics to describe systems

with 2-body interactions, like an Ising model, for instance. However, there exists systems

with many-body interactions and we would like to be able to describe them by graphs

and matrices as well. With this in mind, we can generalise random graphs in the

following way. Instead of only links that connect two vertices, representing an interaction

between them, we allow for the existence of polygons connecting p ≥ 3 vertices with a

p-body interaction. This graph construction can then be codified by a binary matrix in

which each line represent a group of interacting vertices (spins, for instance) and each
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Figure 3. Example of a graph with p-spin interactions and its matrix representation.

row carries the label of the vertices. This is the type of representation frequently used in

most studies of codes [18]. An example of such a graph is given in figure 3. In fact this

is a matrix representation of the tensor whose indices identify the interacting variables.

In this way, we can represent any interacting system as a random GF (q) matrix,

which allows us to use the results of the former section to calculate their number or

their average number according to our needs.

8. Conclusions

The main object of this work was to study some typical properties of sparse random

matrices over Galois fields using techniques originated in the statistical physics of

disordered systems.

In order to carry on our analysis, we introduced a mapping from Galois matrices

to spin systems based on the group homeomorphism between GF (q) under addition

mod q (denoted by ⊕) and the complex q-th roots of unity. This mapping allows

for a direct analogy between the matrices and statistical mechanical systems in the

canonical ensemble, making it possible to associate properties like rank and nullity with

thermodynamical characteristic functions like the free-energy and entropy.

The key point, which is the calculation of the quenched entropy, was carried out in

a set up that allows for further generalisations of the constraints enforced in defining the

classes of matrices over which the averaging is done by characterising their connectivity

profiles. This quenched average is carried out using the replica approach and we are able

to obtain, as a result, the average dimension of the kernel for a general distribution of

non-zero entries. Solving the resulting equations numerically, we find that the average

kernel density is 1 −M/N in all cases studied. We conjecture that this result is always

valid. The replica symmetric ansatz was assumed in the calculation and later on proved

to be exact in this case with the help of the mapping between matrices and spin systems;

this sheds light on the meaning of properties like magnetisation and spin correlation.

The above results have practical relevance in a number of areas, including coding

and network modelling. With respect to LDPC codes, the average kernel density result
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implies that randomly generated LDPC codes typically define codes of rate exactly

1 − M/N , an assumption which is generally made but lacks rigorous derivation.

A generalisation of the result for the kernel and rank allowed us to obtain the

dimension of each eigenspace and its corresponding eigenvalue distribution.

By using the same mathematical techniques, we were also able to find the total

number of large matrices for fixed K and C, row and column connectivities, respectively,

and their average number. We showed then how the matrices could be used to represent

not only usual graphs, but also the connectivity profile of graphs representing p-

spin interactions. The results obtained for the average number of matrices provide

therefore a principled approach to determine the average number of possible graphs

with given connectivity distributions of a more general nature than the connectivity

profiles examined in this paper.

Extensions and generalisations of the presented framework are under study. A most

desired generalisation would be to continuous matrices. The first step in this direction

is to study matrices with entries in continuous groups instead of the elements of a finite

group, more specifically, U(1) which is a straightforward continuous limit of the cyclic

groups.
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Appendix A. Replica Calculations

For the case square matrices (η = 1) and λ 6= 0, we can use the integral representation

of the Kroenecker delta function in the complex plane such that the averaged replicated

kernel size defined in equation (11) is generalised to the size the λ-eigenspace as

Zn(λ) =

〈

1

N

∑

{va}

∮

DWDZ
∑

{Aij}

[

∏

i,j

P(Aij)(WiZj)
χ(Aij)

]

×
M
∏

i=1

∏

a

δ

[

M
⊕

j=1

(

Aij ⊗ vj
a

)

, λ ⊗ vi
a

]〉

K,C,Λ

,

(A.1)

where ⊗ and ⊕ indicate respectively multiplication and summation on GF (q) and

DWDZ =

[

M
∏

i=1

dWi

WKi+1
i

][

M
∏

j=1

dZj

Z
Cj+1
j

]

. (A.2)

Using the representation of the Kroenecker delta given in equation (6), the product

over replica indices of the delta function can be written as

∏

a

δ

[

M
⊕

j=1

(

Aij ⊗ vj
a

)

, λ ⊗ vi
a

]

=
∏

a

1

q

q−1
∏

m=1

{

1 − exp

(

−
2πi

q
m

)

exp

[

−
2πi

q

(

λ ⊗ vi
a

)

] M
∏

j=1

exp

[

2πi

q

(

Aij ⊗ vj
a

)

]

}

=
1

qn

∏

a

[

1 +

q−1
∑

s=1

Fi(s, a)G(s)

]

=
1

qn

n
∑

r=0

∑

〈a1···ar〉

∑

s1,...,sr

G(s1) · · ·G(sr)Fi(s1, a1) · · ·Fi(sr, ar),

(A.3)

with

G(s) ≡
∑

〈m1···ms〉

(−1)s exp

(

−
2πi

q
m1

)

· · · exp

(

−
2πi

q
ms

)

, (A.4)

and

Fi(s, a) = exp

[

−
2πi

q
s
(

λ ⊗ vi
a

)

] M
∏

j=1

γj(s, a, Aij), (A.5)

where we defined, for simplicity,

γj(s, a, Aij) ≡ exp

[

2πi

q
s
(

Aij ⊗ vj
a

)

]

. (A.6)
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The partition function becomes

Zn(λ) =

〈

1

N

∑

{va}

∮

DZ
M
∏

i=1

1

qn

n
∑

r=0

∑

〈a1···ar〉

∑

s1,...,sr

G(s1) · · ·G(sr)

∮

dWi

2πi

1

WKi+1
i

Γi

〉

K,C,Λ

,

(A.7)

where

Γi = exp

[

−
2πi

q
s1

(

λ ⊗ vi
a1

)

]

· · · exp

[

−
2πi

q
sr

(

λ ⊗ vi
ar

)

]

×
∏

j

∑

Aij

P(Aij)(WiZj)
χ(Aij)γj(s1, a1, Aij) · · · γj(sr, ar, Aij)

= pM exp

[

−
2πi

q
s1

(

λ ⊗ vi
a1

)

]

· · · exp

[

−
2πi

q
sr

(

λ ⊗ vi
ar

)

]

×
∏

j

[

1 +
1

p

q−1
∑

h=1

P(Aij = h)WiZjγj(s1, a1, h) · · · γj(sr, ar, h)

]

,

(A.8)

where we define, for convenience, p ≡ P(Aij = 0). Let us define a probability

distribution over the values of h as

P(h) =
P(Aij = h)

1 − p
, (A.9)

in such a way that h varies from 1 to q−1 and the probability over this range is correctly

normalised. Then

Γi = pM exp

[

−
2πi

q
s1

(

λ ⊗ vi
a1

)

]

· · · exp

[

−
2πi

q
sr

(

λ ⊗ vi
ar

)

]

×
∏

j

[

1 +

(

1 − p

p

)

WiZj〈γj(s1, a1, h) · · · γj(sr, ar, h)〉
h

]

= pM exp

[

−
2πi

q
s1

(

λ ⊗ vi
a1

)

]

· · · exp

[

−
2πi

q
sr

(

λ ⊗ vi
ar

)

] N
∑

l=0

∑

〈j1···jl〉

(

1 − p

p

)l

× W l
i Zj1 · · ·Zjl

〈γj1(s1, a1, h) · · · γj1(sr, ar, h)〉
h
· · · 〈γjl

(s1, a1, h) · · · γjl
(sr, ar, h)〉

h
.

(A.10)

The integrals over the Wi’s, acting on the Γi’s, select the power of Wi to be Ki and
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we therefore obtain

Zn =

〈

κ
∑

{va}

∮

DZ

M
∏

i=1







n
∑

r=0

∑

〈a1···ar〉

∑

s1,...,sr

G(s1) · · ·G(sr)

× exp

[

−
2πi

q
s1

(

λ ⊗ vi
a1

)

]

· · · exp

[

−
2πi

q
sr

(

λ ⊗ vi
ar

)

]

∑

〈j1···jKi〉

Zj1 · · ·ZjKi

× 〈γj1(s1, a1, h) · · · γj1(sr, ar, h)〉
h
· · ·
〈

γjKi
(s1, a1, h) · · · γjKi

(sr, ar, h)
〉

h

}〉

K,C,Λ

≈

〈

κ
∑

{va}

∮

DZ
M
∏

i=1







n
∑

r=0

∑

〈a1···ar〉

∑

s1,...,sr

G(s1) · · ·G(sr)

× exp

[

−
2πi

q
s1

(

λ ⊗ vi
a1

)

]

· · · exp

[

−
2πi

q
sr

(

λ ⊗ vi
ar

)

]

×
NKi

Ki!

[

1

N

N
∑

j=1

Zj〈γj(s1, a1, h) · · · γj(sr, ar, h)〉
h

]Ki







〉

K,C,Λ

(A.11)

where

κ = pM2

(

1 − p

p

)

P

i Ki

N−1q−nM . (A.12)

The calculation of N is similar to the calculation of the number of matrices [14]

and we end up with

κ =
1

qnMN
(2)
A

, (A.13)

where N
(2)
A is exactly the number of binary matrices (q = 2). Introducing the replica

overlaps

Qs1,...,sr

〈a1···ar〉
≡

1

M

M
∑

j=1

Zj〈γj(s1, a1, h) · · · γj(sr, ar, h)〉
h
, (A.14)

and the corresponding auxiliary variables Q̂s1,...,sr

〈a1···ar〉
by means of Dirac delta functions,

and noting that we are now working with square matrices such that the indices i and j
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run through the same set, we can express the partition function as

Zn =

∫

DQDQ̂ exp
(

−M
∑

Qs1,...,sr

〈a1···ar〉
Q̂s1,...,sr

〈a1···ar〉

)

×

〈

κ
M

P

i Ki

∏

i Ki!

∏

i

∑

{va}

{

∑

G(s1) · · ·G(sr)
(

Qs1,...,sr

〈a1···ar〉

)Ki

× exp

[

−
2πi

q
s1(λ ⊗ va1

)

]

· · · exp

[

−
2πi

q
sr(λ ⊗ var

)

]}

×

∮

DZi exp
[

Zi

∑

Q̂s1,...,sr

〈a1···ar〉
〈γi(s1, a1, h) · · · γi(sr, ar, h)〉h

]

〉

K,C,Λ

=

∫

DQDQ̂ exp
(

−M
∑

Qs1,...,sr

〈a1···ar〉
Q̂s1,...,sr

〈a1···ar〉

)

×

〈

q−nM M
P

i Ki

(
∑

i Ki)!

∏

i

∑

{va}

{

∑

G(s1) · · ·G(sr)
(

Qs1,...,sr

〈a1···ar〉

)Ki

× exp

[

−
2πi

q
s1(λ ⊗ va1

)

]

· · · exp

[

−
2πi

q
sr(λ ⊗ var

)

]}

×
[

∑

Q̂s1,...,sr

〈a1···ar〉
〈γi(s1, a1, h) · · · γi(sr, ar, h)〉h

]Ci

〉

K,C,Λ

(A.15)

where

DQDQ̂ ≡

(

∏ dQdQ̂

2πi/M

)

, (A.16)

and the summations run over all the allowed values of r, 〈a1 · · · ar〉 and s1, . . . sr.

Under the assumption of replica symmetry in the form

Qs1,...,sr

〈a1···ar〉
= Q0〈x

r〉x, (A.17)

Q̂s1,...,sr

〈a1···ar〉
= Q̂0〈x̂

r〉x̂, (A.18)

where the averages over x and x̂ are taken with respect to the field distributions π(x)

and π̂(x̂) respectively, we can show by straightforward algebraic manipulations that

∑

Qs1,...,sr

〈a1···ar〉
Q̂s1,...,sr

〈a1···ar〉
= Q0Q̂0〈[1 + (q − 1)xx̂]n〉x,x̂, (A.19)

∑

G(s1) · · ·G(sr)
(

Qs1,...,sr

〈a1···ar〉

)Ki

exp

[

−
2πi

q
s1(λ ⊗ va1

)

]

· · · exp

[

−
2πi

q
sr(λ ⊗ var

)

]

=

QKi

0

〈

n
∏

a=1

[

1 + ω̃(va)

Ki
∏

l=1

xl

]〉

x

,

(A.20)

with

ω̃(v) ≡

q−1
∑

s=1

G(s) exp

[

−i
2πs

q
(λ ⊗ v)

]

, (A.21)
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and

[

∑

Q̂s1,...,sr

〈a1···ar〉
〈γi(s1, a1, h) · · · γi(sr, ar, h)〉h

]Ci

=

Q̂Ci

0

〈

n
∏

a=1

Ci
∏

l=1

[1 + ω(va, hl)x̂l]

〉

x̂,h

,
(A.22)

with

ω(v, hl) ≡

q−1
∑

s=1

exp

[

i
2πs

q
(hl ⊗ v)

]

=

{

q − 1, if hl ⊗ v = 0,

−1, otherwise.
(A.23)

Therefore, we have, for the sum over {va},

∑

{va}

{

QKi

0

〈

n
∏

a=1

[

1 + ω̃(va)

Ki
∏

l=1

xl

]〉

x

}







Q̂Ci

0

〈

n
∏

a=1

Ci
∏

l=1

[1 + ω(va, hl)x̂l]

〉

x̂,h







= QKi

0 Q̂Ci

0

〈{

∑

v

[

1 + ω̃(v)

Ki
∏

l=1

xl

]

Ci
∏

l=1

[1 + ω(v, hl)x̂l]

}n〉

x,x̂,h

= QKi

0 Q̂Ci

0

〈{[

1 + (q − 1)

Ki
∏

l=1

xl

]

Ci
∏

l=1

[1 + (q − 1)x̂l]

+

{

(q − 1) +

[

q−1
∑

v=1

ω̃(v)

]

Ki
∏

l=1

xl

}[

Ci
∏

l=1

(1 − x̂l)

]}n〉

x,x̂

,

(A.24)

where with some amount of algebraic calculations to show that

q−1
∑

v=1

ω̃(v) = −(q − 1), (A.25)

when λ 6= 0, we can write

Zn =

∫

DQDQ̂ eMs̃, (A.26)

with

s̃ = −
1

M
ln N

(2)
A − n ln q − Q0Q̂0〈[1 + (q − 1)xx̂]n〉x,x̂ +

1

M
ln Φ, (A.27)

where

Φ =

〈

MΛ

Λ!
QΛ

0 Q̂Λ
0

∏

i

〈{[

1 + (q − 1)

Ki
∏

l=1

xl

]

Ci
∏

l=1

[1 + (q − 1)x̂l]

+ (q − 1)

(

1 −
Ki
∏

l=1

xl

)

Cj
∏

l=1

(1 − x̂l)







n
〉

x,x̂

〉

K,C,Λ

(A.28)
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Let us define α ≡ MQ0Q̂0. For n ≪ 1, we can consider only the leading

contributions in the number of replicas, which gives

ln Φ = ln ǫ(α) +
n

ǫ(α)

∑

i

〈

αΛ

Λ!
〈ln {· · · }〉

x,x̂

〉

K,C,Λ

, (A.29)

with

ǫ(α) =

〈

αΛ

Λ!

〉

K,C,Λ

, (A.30)

and where {· · · } stands for the expression inside curly brackets in equation (A.28) above.

Substituting the above formulas in s̃ for n → 0, the extremization with respect to

Q0, Q̂0, π(x) and π̂(x̂) leads to the saddle point equations (17), (18) and (19).

Appendix B. Proof of Replica Symmetry

Let us consider the probability distribution inside a specific eigenspace with λ 6= 0.

Then

P(v|λ) =

[

∑

v

δ(Av, λv)

]−1

= q−dA(λ). (B.1)

The distribution of the k-point functions is

P(mk) =

〈

δ

(

mk −
1

N

N
∑

j=1

σj
1 · · ·σ

j
k

)〉

σ1,...,σk

= q−kdA(λ)
∑

v1,...,vk

δ(Av1, λv1) · · · δ(Avk, λvk)

× δ

[

mk −
1

N

N
∑

j=1

exp

(

2πi

q

(

vj
1 + · · · + vj

k

)

)

]

.

(B.2)

Let us call

g(v1, ...,vk) ≡ δ

[

mk −
1

N

N
∑

j=1

exp

(

2πi

q

(

vj
1 + · · · + vj

k

)

)

]

, (B.3)
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and note that g(v1,v2, ...,vk) = g(v1,v2, ...,vk−1 ⊕ vk, 0). Therefore we can write

P(mk) = q−kdA(λ)
∑

v1,...,vk

δ(Av1, λv1) · · · δ(Avk, λvk)g(v1,v2, ...,vk−1 ⊕ vk, 0)

= q−kdA(λ)
∑

v1,...,vk

δ(Av1, λv1) · · · δ(Avk, λvk)
∑

u

δ(u,vk−1 ⊕ vk)g(v1,v2, ...,u, 0)

= q−kdA(λ)
∑

v1,...,vk−2,u

g(v1,v2, ...,u, 0)

×
∑

vk−1

δ(Avk−1, λvk−1)
∑

vk

δ(Avk, λvk)δ(u,vk−1 ⊕ vk)

= q−kdA(λ)
∑

v1,...,vk−2,u

g(v1,v2, ...,u, 0)

×
∑

vk−1

δ(Avk−1, λvk−1)δ(A(u ⊕ (−vk−1)), 0)

= q−(k−1)dA(λ)
∑

v1,...,vk−2,u

δ(Au, λu)g(v1,v2, ...,u, 0)

=

〈

δ

(

mk −
1

N

N
∑

j=1

σj
1 · · ·σ

j
k−1

)〉

σ1,...,σk−1

.

(B.4)

Therefore, the distribution of the k-point functions is the same as the (k − 1)-

point functions for any k > 2. Therefore, if the magnetisation is zero, all other higher

order correlations are also zero and, therefore, there is neither a spin-glass phase nor

more complex types of phases but the paramagnetic one. This implies that there is

no replica symmetry breaking in the system [19]. The fact that the solution is replica

symmetric means that the temperature T = 1/ ln q can be associated with the Nishimori

temperature of the system.


