364 research outputs found

    Decay constants of the heavy-light mesons from the field correlator method

    Get PDF
    Meson Green's functions and decay constants fΓf_{\Gamma} in different channels Γ\Gamma are calculated using the Field Correlator Method. Both, spectrum and fΓf_\Gamma, appear to be expressed only through universal constants: the string tension σ\sigma, αs\alpha_s, and the pole quark masses. For the SS-wave states the calculated masses agree with the experimental numbers within ±5\pm 5 MeV. For the DD and DsD_s mesons the values of fP(1S)f_{\rm P} (1S) are equal to 210(10) and 260(10) MeV, respectively, and their ratio fDs/fDf_{D_s}/f_D=1.24(3) agrees with recent CLEO experiment. The values fP(1S)=182,216,438f_{\rm P}(1S)=182, 216, 438 MeV are obtained for the BB, BsB_s, and BcB_c mesons with the ratio fBs/fBf_{B_s}/f_B=1.19(2) and fD/fBf_D/f_B=1.14(2). The decay constants fP(2S)f_{\rm P}(2S) for the first radial excitations as well as the decay constants fV(1S)f_{\rm V}(1S) in the vector channel are also calculated. The difference of about 20% between fDsf_{D_s} and fDf_D, fBsf_{B_s} and fBf_B directly follows from our analytical formulas.Comment: 37 pages, 10 tables, RevTeX

    Effect of the sample geometry on the second magnetization peak in single crystalline Ba0.63_{0.63}K0.37_{0.37}BiO3_3 thick film

    Full text link
    Magnetization hysteresis loop M(H)M(H) measurements performed on a single crystalline Ba0.63_{0.63}K0.37_{0.37}BiO3_3 superconducting thick film reveal pronounced sample geometry dependence of the "second magnetization peak" (SMP), i.e. a maximum in the width of M(H)M(H) occurring at the field HSMP(T)H_{\rm SMP}(T). In particular, it is found that the SMP vanishes decreasing the film dimension. We argue that the observed sample geometry dependence of the SMP cannot be accounted for by models which assume a vortex pinning enhancement as the origin of the SMP. Our results can be understood considering the thermomagnetic instability effect and/or non-uniform current distribution at H<HSMPH < H_{\rm SMP} in large enough samples.Comment: 8 pages 3 figure

    Masses of heavy baryons in the relativistic quark model

    Full text link
    The masses of the ground state heavy baryons consisting of two light (u,d,s) and one heavy (c,b) quarks are calculated in the heavy-quark--light-diquark approximation within the constituent quark model. The light quarks, forming the diquark, and the light diquark in the baryon are treated completely relativistically. The expansion in v/c up to the second order is used only for the heavy (b and c) quarks. The diquark-gluon interaction is taken modified by the form factor describing the light diquark structure in terms of the diquark wave functions. An overall reasonable agreement of the obtained predictions with available experimental data and previous theoretical results is found.Comment: 13 pages, 2 figures, version published in Phys. Rev.

    Spin Glass Phase in Spin-Density-Wave Cr–Co Alloys

    Get PDF
    A spin glass (SG) phase was observed in the spin-density wave (SDW) alloys Cr1−xCox at high Co concentrations (x≥13%). After zero-field cooling, the temperature dependence of the magnetization M(T) of Cr0.87Co0.13 and Cr0.85Co0.15, measured in an applied field H=100 Oe with a SQUID magnetometer, exhibits a low T maximum, characteristic of a SG. Cooling in the measuring field, however, gives quite a different behavior. The field dependence of the magnetization M(H) is nonlinear, with a pronounced hysteresis. A strong time relaxation M(t) is also an indication of a SG phase. SG in Cr1−xCox is formed at high impurity concentrations, possibly due to clustering of the magnetic impurities

    Core-Core Dynamics in Spin Vortex Pairs

    Full text link
    We investigate magnetic nano-pillars, in which two thin ferromagnetic nanoparticles are separated by a nanometer thin nonmagnetic spacer and can be set into stable spin vortex-pair configurations. The 16 ground states of the vortex-pair system are characterized by parallel or antiparallel chirality and parallel or antiparallel core-core alignment. We detect and differentiate these individual vortex-pair states experimentally and analyze their dynamics analytically and numerically. Of particular interest is the limit of strong core-core coupling, which we find can dominate the spin dynamics in the system. We observe that the 0.2 GHz gyrational resonance modes of the individual vortices are replaced with 2-6 GHz range collective rotational and vibrational core-core resonances in the configurations where the cores form a bound pair. These results demonstrate new opportunities in producing and manipulating spin states on the nanoscale and may prove useful for new types of ultra-dense storage devices where the information is stored as multiple vortex-core configurations

    Relativistic Description of Exclusive Semileptonic Decays of Heavy Mesons

    Get PDF
    Using quasipotential approach, we have studied exclusive semileptonic decays of heavy mesons with the account of relativistic effects. Due to more complete relativistic description of the ss quark more precise expressions for semileptonic form factors are obtained. Various differential distributions in exclusive semileptonic decays of heavy mesons are calculated. It is argued that consistent account of relativistic effects and HQET motivated choice of the parameters of quark-antiquark potential allow to get reliable value for the ratio A2(0)/A1(0)A_2(0)/A_1(0) in the D→K∗lνlD\to K^*l\nu_l decay as well as the ratio~Γ(D→K∗lνl)/Γ(D→Klνl)\Gamma(D\to K^*l\nu_l)/\Gamma(D\to Kl\nu_l). All calculated branching ratios are in accord with available experimental data.Comment: 18 pages, LATEX, 2 figures inclosed + 4 Postscript figure
    • …
    corecore