158 research outputs found
TAPping into the treasures of tubulin using novel protein production methods
Microtubules are cytoskeletal elements with important cellular functions, whose dynamic behaviour and properties are in part regulated by microtubule-associated proteins (MAPs). The building block of microtubules is tubulin, a heterodimer of α- and β-tubulin subunits. Longitudinal interactions between tubulin dimers facilitate a head-to-tail arrangement of dimers into protofilaments, while lateral interactions allow the formation of a hollow microtubule tube that mostly contains 13 protofilaments. Highly homologous α- and β-tubulin isotypes exist, which are encoded by multi-gene families. In vitro studies on microtubules and MAPs have largely relied on brain-derived tubulin preparations. However, these consist of an unknown mix of tubulin isotypes with undefined post-translational modifications. This has blocked studies on the functions of tubulin isotypes and the effects of tubulin mutations found in human neurological disorders. Fortunately, various methodologies to produce recombinant mammalian tubulins have become available in the last years, allowing researchers to overcome this barrier. In addition, affinity-based purification of tagged tubulins and identification of tubulin-associated proteins (TAPs) by mass spectrometry has revealed the 'tubulome' of mammalian cells. Future experiments with recombinant tubulins should allow a detailed description of how tubulin isotype influences basic microtubule behaviour, and how MAPs and TAPs impinge on tubulin isotypes and microtubule-based processes in different cell types
Alternative splicing of β-galactosidase mRNA generates the classic lysosomal enzyme and a β-galactosidase-related protein
We have isolated two cDNAs encoding human lysosomal β-galactosidase, the enzyme deficiency in G(M1)-gangliosidosis and Morquio B syndrome, and a β-galactosidase-related protein. In total RNA from normal fibroblasts a major mRNA of about 2.5 kilobases (kb) is recognized by cDNA probes. A minor transcript of about 2.0 kb is visible only in immunoselected polysomal RNA. A heterogeneous pattern of expression of the 2.5-kb β-galactosidase transcript is observed in fibroblasts from different G(M1)-gangliosidosis patients. The nucleotide sequences of the two cDNAs are extensively colinear. However, the short cDNA misses two noncontiguous protein-encoding regions (1 and 2) present in the long cDNA. The exclusion of region 1 in the short molecule introduces a frameshift in its 3'-flanking sequence, which is restored by the exclusion of region 2. These findings imply the existence of two mRNA templates, which are read in a different frame only in the nucleotide stretch between regions 1 and 2. Sequence analysis of genomic exons of the β-galactosidase gene shows that the short mRNA is generated by alternative splicing. The long and short cDNAs direct the synthesis in COS-1 cells of β-galactosidase polypeptides of 85 and 68 kDa, respectively. Only the long protein is catalytically active under the assay conditions used, and it is capable of correcting β-galactosidase activity after endocytosis by G(M1)-gangliosidosis fibroblasts. The subcellular localization of cDNA-encoded β-galactosidase and β-galactosidase-related proteins is different.</p
Alternative splicing of β-galactosidase mRNA generates the classic lysosomal enzyme and a β-galactosidase-related protein
We have isolated two cDNAs encoding human lysosomal β-galactosidase, the enzyme deficiency in G(M1)-gangliosidosis and Morquio B syndrome, and a β-galactosidase-related protein. In total RNA from normal fibroblasts a major mRNA of about 2.5 kilobases (kb) is recognized by cDNA probes. A minor transcript of about 2.0 kb is visible only in immunoselected polysomal RNA. A heterogeneous pattern of expression of the 2.5-kb β-galactosidase transcript is observed in fibroblasts from different G(M1)-gangliosidosis patients. The nucleotide sequences of the two cDNAs are extensively colinear. However, the short cDNA misses two noncontiguous protein-encoding regions (1 and 2) present in the long cDNA. The exclusion of region 1 in the short molecule introduces a frameshift in its 3'-flanking sequence, which is restored by the exclusion of region 2. These findings imply the existence of two mRNA templates, which are read in a different frame only in the nucleotide stretch between regions 1 and 2. Sequence analysis of genomic exons of the β-galactosidase gene shows that the short mRNA is generated by alternative splicing. The long and short cDNAs direct the synthesis in COS-1 cells of β-galactosidase polypeptides of 85 and 68 kDa, respectively. Only the long protein is catalytically active under the assay conditions used, and it is capable of correcting β-galactosidase activity after endocytosis by G(M1)-gangliosidosis fibroblasts. The subcellular localization of cDNA-encoded β-galactosidase and β-galactosidase-related proteins is different.</p
Identification and in vitro reconstitution of lysosomal neuraminidase from human placenta
Lysosomal neuraminidase from human placenta has been obtained in its active form by association of an inactive neuraminidase polypeptide with β-galactosidase and the protective protein. Using a specific antiserum, we have now identified a 66-kDa protein as the inactive neuraminidase polypeptide. It is specifically recognized on immunoblots only in its nonreduced state, and it coprecipitates with neuraminidase activity. The 66-kDa polypeptide is substantially glycosylated (38-kDa protein core with 7-14 N-linked oligosaccharide chains), a feature characteristic of lysosomal integral membrane proteins. Specific removal of the 66-kDa neuraminidase polypeptide from glycoprotein preparations prevents the generation of neuraminidase activity. Removal of β-galactosidase or destruction of the protective protein also hinders the formation of active neuraminidase. Reconstitution of neuraminidase activity is observed after mixing glycoprotein preparations, depleted in different components of the β-galactosidase-neuraminidase-protective protein complex, indicating that all three components of the complex are required for neuraminidase activity. Association of the neuraminidase polypeptide and the protective protein generates unstables neuraminidase activity, whereas association with β-galactosidase is required for stability.</p
Identification and in vitro reconstitution of lysosomal neuraminidase from human placenta
Lysosomal neuraminidase from human placenta has been obtained in its active form by association of an inactive neuraminidase polypeptide with β-galactosidase and the protective protein. Using a specific antiserum, we have now identified a 66-kDa protein as the inactive neuraminidase polypeptide. It is specifically recognized on immunoblots only in its nonreduced state, and it coprecipitates with neuraminidase activity. The 66-kDa polypeptide is substantially glycosylated (38-kDa protein core with 7-14 N-linked oligosaccharide chains), a feature characteristic of lysosomal integral membrane proteins. Specific removal of the 66-kDa neuraminidase polypeptide from glycoprotein preparations prevents the generation of neuraminidase activity. Removal of β-galactosidase or destruction of the protective protein also hinders the formation of active neuraminidase. Reconstitution of neuraminidase activity is observed after mixing glycoprotein preparations, depleted in different components of the β-galactosidase-neuraminidase-protective protein complex, indicating that all three components of the complex are required for neuraminidase activity. Association of the neuraminidase polypeptide and the protective protein generates unstables neuraminidase activity, whereas association with β-galactosidase is required for stability.</p
Chromatin jets define the properties of cohesin-driven in vivo loop extrusion
Complex genomes show intricate organization in three-dimensional (3D) nuclear space. Current models posit that cohesin extrudes loops to form self-interacting domains delimited by the DNA binding protein CTCF. Here, we describe and quantitatively characterize cohesin-propelled, jet-like chromatin contacts as landmarks of loop extrusion in quiescent mammalian lymphocytes. Experimental observations and polymer simulations indicate that narrow origins of loop extrusion favor jet formation. Unless constrained by CTCF, jets propagate symmetrically for 1-2 Mb, providing an estimate for the range of in vivo loop extrusion. Asymmetric CTCF binding deflects the angle of jet propagation as experimental evidence that cohesin-mediated loop extrusion can switch from bi- to unidirectional and is controlled independently in both directions. These data offer new insights into the physiological behavior of in vivo cohesin-mediated loop extrusion and further our understanding of the principles that underlie genome organization
Appetitive Operant Conditioning in Mice: Heritability and Dissociability of Training Stages
To study the heritability of different training stages of appetitive operant conditioning, we carried out behavioral screening of 5 standard inbred mouse strains, 28 recombinant-inbred (BxD) mouse lines and their progenitor strains C57BL/6J and DBA/2J. We also computed correlations between successive training stages to study whether learning deficits at an advanced stage of operant conditioning may be dissociated from normal performance in preceding phases of training. The training consisted of two phases: an operant nose poking (NP) phase, in which mice learned to collect a sucrose pellet from a food magazine by NP, and an operant lever press and NP phase, in which mice had to execute a sequence of these two actions to collect a food pellet. As a measure of magazine oriented exploration, we also studied the nose poke entries in the food magazine during the intertrial intervals at the beginning of the first session of the nose poke training phase. We found significantly heritable components in initial magazine checking behavior, operant NP and lever press–NP. Performance levels in these phases were positively correlated, but several individual strains were identified that showed poor lever press–NP while performing well in preceding training stages. Quantitative trait loci mapping revealed suggestive likelihood ratio statistic peaks for initial magazine checking behavior and lever press–NP. These findings indicate that consecutive stages toward more complex operant behavior show significant heritable components, as well as dissociability between stages in specific mouse strains. These heritable components may reside in different chromosomal areas
Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization
Cytoplasmic linker protein (CLIP)-170, CLIP-115, and the dynactin subunit p150Glued are structurally related proteins, which associate specifically with the ends of growing microtubules (MTs). Here, we show that down-regulation of CLIP-170 by RNA interference results in a strongly reduced accumulation of dynactin at the MT tips. The NH2 terminus of p150Glued binds directly to the COOH terminus of CLIP-170 through its second metal-binding motif. p150Glued and LIS1, a dynein-associating protein, compete for the interaction with the CLIP-170 COOH terminus, suggesting that LIS1 can act to release dynactin from the MT tips. We also show that the NH2-terminal part of CLIP-170 itself associates with the CLIP-170 COOH terminus through its first metal-binding motif. By using scanning force microscopy and fluorescence resonance energy transfer-based experiments we provide evidence for an intramolecular interaction between the NH2 and COOH termini of CLIP-170. This interaction interferes with the binding of the CLIP-170 to MTs. We propose that conformational changes in CLIP-170 are important for binding to dynactin, LIS1, and the MT tips
- …