55 research outputs found

    Detection of Plant Viruses and Disease Management : Relevance of Genetic Diversity and Evolution

    Get PDF
    Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable

    Complete Genome Sequence of a Tomato Isolate of Parietaria Mottle Virus from Italy

    Get PDF
    We report here the complete genome sequence of isolate T32 of parietaria mottle virus (PMoV) infecting tomato plants in Turin, Italy, obtained by Sanger sequencing. T32 shares 90.48 to 96.69% nucleotide identity with other two PoMV isolates, CR8 and Pe1, respectively, whose complete genome sequences are available

    Proteomic insights into the effect of Broad bean wilt virus-1 infection in Nicotiana benthamiana plants

    Get PDF
    Broad bean wilt virus 1 (BBWV-1, genus Fabavirus, family Secoviridae) infects many plants species, including important horticultural crops. Since some tobacco plants such as Nicotiana benthamiana, are susceptible to many viruses, they are used as experimental hosts and therefore abundantinformation about these species is available in databases. Here, the protein differential expression in N. benthamiana plants infected with BBWV-1 wasstudied using Liquid Chromatography coupled with Mass Spectrometry in tandem analysis (LC–MS/MS). Also, we studied the role of viral VP37 protein which is a BBWV-1 determinant of pathogenicity in the accumulation of the host proteins. For this purpose, we agroinfiltrated N. benthamiana plants with two BBWV-1 cDNA infectious clones: pBBWV1-Wt wilt type and the pBBWV1-G492C mutant knocking out for the viral VP37 protein. Virus infection induced the differential expression of 44 host proteins: 22 were overexpressed and the other 22 were underexpressed. These proteins were involved in important plant processes and located in different cell organelles, mainly in chloroplasts. Finally, 24 of these proteins were expressed differentially according to the presence of VP37 protein. Relation among host proteins that were differentially expressed, plant symptoms, and subcellular alterations are discussed

    Detección y cuantificación del virus del mosaico de la sandía por RT-PCR a tiempo real

    Get PDF
    El virus del mosaico de la sandía (watermelon mosaic virus, WMV) produce graves daños en varios cultivos de cucurbitáceas en todo el mundo. El control de enfermedades se basa en restringir la propagación del virus y en la obtención de variedades resistentes por mejora genética. Para poder aplicar estas estrategias de control es necesario disponer de herramientas para la detección sensible y la cuantificación precisa de WMV en plantas infectadas. En este trabajo, se desarrolló un procedimiento basado en la retrotranscripción seguida de una PCR a tiempo real con un par de iniciadores y una sonda TaqMan® específicos de WMV

    Persistent Southern Tomato Virus (STV) Interacts with Cucumber Mosaic and/or Pepino Mosaic Virus in Mixed- Infections Modifying Plant Symptoms, Viral Titer and Small RNA Accumulation

    Get PDF
    Southern tomato virus (STV) is a persistent virus that was, at the beginning, associated with some tomato fruit disorders. Subsequent studies showed that the virus did not induce apparent symptoms in single infections. Accordingly, the reported symptoms could be induced by the interaction of STV with other viruses, which frequently infect tomato. Here, we studied the effect of STV in co- and triple-infections with Cucumber mosaic virus (CMV) and Pepino mosaic virus (PepMV). Our results showed complex interactions among these viruses. Co-infections leaded to a synergism between STV and CMV or PepMV: STV increased CMV titer and plant symptoms at early infection stages, whereas PepMV only exacerbated the plant symptoms. CMV and PepMV coinfection showed an antagonistic interaction with a strong decrease of CMV titer and a modification of the plant symptoms with respect to the single infections. However, the presence of STV in a triple-infection abolished this antagonism, restoring the CMV titer and plant symptoms. The siRNAs analysis showed a total of 78 miRNAs, with 47 corresponding to novel miRNAs in tomato, which were expressed differentially in the plants that were infected with these viruses with respect to the control mock-inoculated plants. These miRNAs were involved in the regulation of important functions and their number and expression level varied, depending on the virus combination. The number of vsiRNAs in STV single-infected tomato plants was very small, but STV vsiRNAs increased with the presence of CMV and PepMV. Additionally, the rates of CMV and PepMV vsiRNAs varied depending on the virus combination. The frequencies of vsiRNAs in the viral genomes were not uniform, but they were not influenced by other viruses

    Characterization of Tomato spotted wilt virus isolates that overcome the Sw-5 resistance gene in tomato and fitness assays

    Get PDF
    Resistance-breaking (RB) isolates of Tomato spotted wilt virus (TSWV) that overcome the resistance conferred by the Sw-5 gene in tomato have had only a limited spread since they were first detected in north-eastern Spain in 2002. Symptom expression, homogeneity, stability and the transmission capacity of RB and non-resistance breaking (NRB) isolates were biologically compared. The fitness of both types of isolates infecting tomato plants was determined in competition assays. All TSWV isolates induced similar systemic symptoms in a wide range of plant species, except RB isolates in tomato carrying the Sw-5 resistance gene and pepper carrying the Tsw resistance gene. The mechanical transmission of RB isolates to tomato plants with the Sw-5 gene failed in some trials, although NRB isolates did not differ noticeably in transmission efficiency when tested with the thrips Frankliniella occidentalis. Biological clones from individual local lesions obtained by mechanically inoculating Nicotiana glutinosa in some TSWV field samples showed that they were biologically homogeneous. Mixed infections of RB and wilt-type isolates were not found. The RB isolates were relatively stable because no reversion to NRB isolates was seen after serial passages in susceptible tomato plants. In competition assays between RB and NRB isolates, after serial passages in susceptible tomato plants, the prevalence of a particular isolate was not related to its capacity to overcome Sw-5 gene resistance. The low spread of the RB isolates in Spain does not seem to be related to a loss of fitness in tomato plants or to differences in transmission capacity by thrips, but it could be related to the reduction of the selection pressure of RB isolates as consequence of the gradual replacement of susceptible tomato plants by resistant tomato plants by growers

    Actas de Horticultura

    Get PDF
    El cultivo de los cítricos comenzó en Extremo Oriente hace unos 4.000 años, en las regiones que ocupan actualmente China y Japón. Los grandes movimientos migratorios que ocasionaron las conquistas de Alejandro Magno, la expansión del Islam y el descubrimiento de América favorecieron la expansión de este cultivo por todo el mundo. Sin embargo, fue a partir del siglo XVIII cuando la citricultura adquirió una relevancia económica, tanto desde el punto de vista industrial como ornamental. El movimiento de plantas fue acompañado por la difusión de diversos patógenos, aunque afortunadamente, sólo una parte de los presentes en las regiones de origen han llegado en las nuevas áreas de cultivo. En Italia, la superficie cultivada con cítricos es de aproximadamente 160.000 Ha y de éstas, alrededor del 60% se encuentran en Sicilia. En los últimos años ha cobrado relevancia la producción de cítricos destinados a fines ornamentales, con una producción media anual en Sicilia de unos 4,5 millones de plantas, lo que la convierte en el máximo productor de cítricos ornamentales de Europa. Entre estos se encuentran los limones ornamentales, distintos kumquats, calamondín, naranjo amargo, cidro, naranjo dulce, mandarinos y pomelos. Desde el punto de vista sanitario, hay que tener en cuenta que las plantas ornamentales que se venden por todo el territorio Europeo pueden actuar como reservorios y facilitar el tráfico y emergencia de nuevas enfermedades. Entre las enfermedades más comunes en los cítricos ornamentales se encuentra la exocortis, las protuberancias nerviales (vein enation), las manchas anulares (ringspot), la psoriasis, la tristeza, la variegación, las concavidades gomosas (concave gum), la impietratura, el stubborn y el Huanglongbing. En este artículo se describen las principales enfermedades que afectan a los cítricos ornamentales y que representan un riesgo en la Comunidad Europea
    corecore