393 research outputs found

    Self-Diffusion of a Polymer Chain in a Melt

    Full text link
    Self-diffusion of a polymer chain in a melt is studied by Monte Carlo simulations of the bond fluctuation model, where only the excluded volume interaction is taken into account. Polymer chains, each of which consists of NN segments, are located on an LΓ—LΓ—LL \times L \times L simple cubic lattice under periodic boundary conditions, where each segment occupies 2Γ—2Γ—22 \times 2 \times 2 unit cells. The results for N=32,48,64,96,128,192,256,384N=32, 48, 64, 96, 128, 192, 256, 384 and 512 at the volume fraction ϕ≃0.5\phi \simeq 0.5 are reported, where L=128L = 128 for N≀256N \leq 256 and L=192 for Nβ‰₯384N \geq 384. The NN-dependence of the self-diffusion constant DD is examined. Here, DD is estimated from the mean square displacements of the center of mass of a single polymer chain at the times larger than the longest relaxation time. From the data for N=256N = 256, 384 and 512, the apparent exponent xdx_{\rm d}, which describes the apparent power law dependence of DD on NN as D∝Nβˆ’xdD \propto N^{- x_{\rm d}}, is estimated as xd≃2.4x_{\rm d} \simeq 2.4. The ratio DΟ„/<Re2>D \tau / < R_{\rm e}^{2} > seems to be a constant for N=192,256,384N = 192, 256, 384 and 512, where Ο„\tau and <Re2><R_{\rm e}^{2}> denote the longest relaxation time and the mean square end-to-end distance, respectively.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp

    TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+

    Get PDF
    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+-release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 ΞΌM but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.Publisher PDFPeer reviewe

    Interference coloration as an anti-predator defence

    Get PDF
    Interference coloration, in which the perceived colour varies predictably with the angle of illumination or observation, is extremely widespread across animal groups. However, despite considerable advances in our understanding of the mechanistic basis of interference coloration in animals, we still have a poor understanding of its function. Here, I show, using avian predators hunting dynamic virtual prey, that the presence of interference coloration can significantly reduce a predator's attack success. Predators required more pecks to successfully catch interference-coloured prey compared with otherwise identical prey items that lacked interference coloration, and attacks against prey with interference colours were less accurate, suggesting that changes in colour or brightness caused by prey movement hindered a predator's ability to pinpoint their exact location. The pronounced antipredator benefits of interference coloration may explain why it has evolved independently so many times. Β© 2015 The Author(s) Published by the Royal Society. All rights reserved

    An emerging role for NAADP-mediated Ca2+ signaling in the pancreatic beta-cell

    Get PDF
    Several recent reports, including one in this journal, have reignited the debate about whether the calcium-mobilizing messenger, nicotinic adenine nucleotide diphosphate (NAADP) plays a central role in the regulation of calcium signalling in pancreatic Ξ²-cell. These studies have highlighted a role for NAADP-induced Ca(2+) mobilization not only in mediating the effects of the incretin, GLP-1 and the autocrine proliferative effects of insulin, but also possibly a fundamental role in glucose-mediated insulin secretion in the pancreatic Ξ²-cell

    Defective platelet function in Niemann-Pick disease type C1

    Get PDF
    Niemann-Pick disease type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mutations in either NPC1 (95% of cases) or NPC2. Reduced late endosome/lysosome calcium (Ca2+) levels and the accumulation of unesterified cholesterol and sphingolipids within the late endocytic system characterize this disease. We previously reported impaired lysosome-related organelle (LRO) function in Npc1βˆ’/βˆ’ Natural Killer cells; however, the potential contribution of impaired acid compartment Ca2+ flux and LRO function in other cell types has not been determined. Here, we investigated LRO function in NPC1 disease platelets. We found elevated numbers of circulating platelets, impaired platelet aggregation and prolonged bleeding times in a murine model of NPC1 disease. Electron microscopy revealed abnormal ultrastructure in murine platelets, consistent with that seen in a U18666A (pharmacological inhibitor of NPC1) treated megakaryocyte cell line (MEG-01) exhibiting lipid storage and acidic compartment Ca2+ flux defects. Furthermore, platelets from NPC1 patients across different ages were found to cluster at the lower end of the normal range when platelet numbers were measured and had platelet volumes that were clustered at the top of the normal range. Taken together, these findings highlight the role of acid compartment Ca2+ flux in the function of platelet LROs

    EHMTI-0026. Neuroprolotherapy and acupuncture for clinical trial of acute and chronic migraine treatment

    Get PDF
    Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR) are Ca2+-mobilizing messengers important for modulating cardiac excitation–contraction coupling and pathophysiology. CD38, which belongs to the ADP-ribosyl cyclase family, catalyzes synthesis of both NAADP and cADPR in vitro. However, it remains unclear whether this is the main enzyme for their production under physiological conditions. Here we show that membrane fractions from WT but not CD38βˆ’/βˆ’ mouse hearts supported NAADP and cADPR synthesis. Membrane permeabilization of cardiac myocytes with saponin and/or Triton X-100 increased NAADP synthesis, indicating that intracellular CD38 contributes to NAADP production. The permeabilization also permitted immunostaining of CD38, with a striated pattern in WT myocytes, whereas CD38βˆ’/βˆ’ myocytes and nonpermeabilized WT myocytes showed little or no staining, without striation. A component of Ξ²-adrenoreceptor signaling in the heart involves NAADP and lysosomes. Accordingly, in the presence of isoproterenol, Ca2+ transients and contraction amplitudes were smaller in CD38βˆ’/βˆ’ myocytes than in the WT. In addition, suppressing lysosomal function with bafilomycin A1 reduced the isoproterenol-induced increase in Ca2+ transients in cardiac myocytes from WT but not CD38βˆ’/βˆ’ mice. Whole hearts isolated from CD38βˆ’/βˆ’ mice and exposed to isoproterenol showed reduced arrhythmias. SAN4825, an ADP-ribosyl cyclase inhibitor that reduces cADPR and NAADP synthesis in mouse membrane fractions, was shown to bind to CD38 in docking simulations and reduced the isoproterenol-induced arrhythmias in WT hearts. These observations support generation of NAADP and cADPR by intracellular CD38, which contributes to effects of Ξ²-adrenoreceptor stimulation to increase both Ca2+ transients and the tendency to disturb heart rhythm

    Molecular Characterization of a Novel Intracellular ADP-Ribosyl Cyclase

    Get PDF
    Background. ADP-ribosyl cyclases are remarkable enzymes capable of catalyzing multiple reactions including the synthesis of the novel and potent intracellular calcium mobilizing messengers, cyclic ADP-ribose and NAADP. Not all ADP-ribosyl cyclases however have been characterized at the molecular level. Moreover, those that have are located predominately at the outer cell surface and thus away from their cytosolic substrates. Methodology/Principal Findings. Here we report the molecular cloning of a novel expanded family of ADP-ribosyl cyclases from the sea urchin, an extensively used model organism for the study of inositol trisphosphate-independent calcium mobilization. We provide evidence that one of the isoforms (SpARC1) is a soluble protein that is targeted exclusively to the endoplasmic reticulum lumen when heterologously expressed. Catalytic activity of the recombinant protein was readily demonstrable in crude cell homogenates, even under conditions where luminal continuity was maintained. Conclusions/Significance. Our data reveal a new intracellular location for ADP-ribosyl cyclases and suggest that production of calcium mobilizing messengers may be compartmentalized

    The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca2+ release channels

    Get PDF
    In this review, we describe the background and implications of our recent discovery that two-pore channels (TPCs) comprise a novel class of calcium release channels gated by the intracellular messenger nicotinic acid adenine dinucleotide phosphate (NAADP). Their localisation to the endolysosomal system highlights a new function for these organelles as targets for NAADP-mediated Ca(2+) mobilisation. In addition, we describe how TPCs may also trigger further Ca(2+) release by coupling to the endoplasmic reticular stores through activation of IP(3) receptors and ryanodine receptors
    • …
    corecore