64 research outputs found

    R-CVP versus R-CHOP versus R-FM for the initial treatment of patients with advanced-stage follicular lmphoma: results of the FOLL05 trial conducted by the Fondazione Italiana Linfomi

    Get PDF
    PURPOSE Although rituximab (R) is commonly used for patients with advanced follicular lymphoma (FL) requiring treatment, the optimal associated chemotherapy regimen has yet to be clarified. PATIENTS AND METHODS We conducted an open-label, multicenter, randomized trial among adult patients with previously untreated stages II to IV FL to compare efficacy of eight doses of R associated with eight cycles of cyclophosphamide, vincristine, and prednisone (CVP) or six cycles of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or six cycles of fludarabine and mitoxantrone (FM). The principal end point of the study was time to treatment failure (TTF). Results There were 534 patients enrolled onto the study. Overall response rates were 88%, 93%, and 91% for R-CVP, R-CHOP, and R-FM, respectively (P=.247). After a median follow-up of 34 months, 3-year TTFs were 46%, 62%, and 59% for the respective treatment groups (R-CHOP v R-CVP, P=.003; R-FM v R-CVP, P=.006; R-FM v R-CHOP, P=.763). Three-year progression-free survival (PFS) rates were 52%, 68%, and 63% (overall P=.011), respectively, and 3-year overall survival was 95% for the whole series. R-FM resulted in higher rates of grade 3 to 4 neutropenia (64%) compared with R-CVP (28%) and R-CHOP (50%; P< .001). Overall, 23 second malignancies were registered during follow-up: four in R-CVP, five in R-CHOP, and 14 in R-FM. CONCLUSION In this study, R-CHOP and R-FM were superior to R-CVP in terms of 3-year TTF and PFS. In addition, R-CHOP had a better risk-benefit ratio compared with R-FM

    Education modulates brain maintenance in presymptomatic frontotemporal dementia

    Get PDF
    Objective Cognitively engaging lifestyles have been associated with reduced risk of conversion to dementia. Multiple mechanisms have been advocated, including increased brain volumes (ie, brain reserve) and reduced disease progression (ie, brain maintenance). In cross-sectional studies of presymptomatic frontotemporal dementia (FTD), higher education has been related to increased grey matter volume. Here, we examine the effect of education on grey matter loss over time. Methods Two-hundred twenty-nine subjects at-risk of carrying a pathogenic mutation leading to FTD underwent longitudinal cognitive assessment and T1-weighted MRI at baseline and at 1 year follow-up. The first principal component score of the graph-Laplacian Principal Component Analysis on 112 grey matter region-of-interest volumes was used to summarise the grey matter volume (GMV). The effects of education on cognitive performances and GMV at baseline and on the change between 1 year follow-up and baseline (slope) were tested by Structural Equation Modelling. Results Highly educated at-risk subjects had better cognition and higher grey matter volume at baseline;moreover, higher educational attainment was associated with slower loss of grey matter over time in mutation carriers. Conclusions This longitudinal study demonstrates that even in presence of ongoing pathological processes, education may facilitate both brain reserve and brain maintenance in the presymptomatic phase of genetic FTD

    White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort

    Get PDF
    © 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).Genetic frontotemporal dementia is most commonly caused by mutations in the progranulin (GRN), microtubule-associated protein tau (MAPT) and chromosome 9 open reading frame 72 (C9orf72) genes. Previous small studies have reported the presence of cerebral white matter hyperintensities (WMH) in genetic FTD but this has not been systematically studied across the different mutations. In this study WMH were assessed in 180 participants from the Genetic FTD Initiative (GENFI) with 3D T1- and T2-weighed magnetic resonance images: 43 symptomatic (7 GRN, 13 MAPT and 23 C9orf72), 61 presymptomatic mutation carriers (25 GRN, 8 MAPT and 28 C9orf72) and 76 mutation negative non-carrier family members. An automatic detection and quantification algorithm was developed for determining load, location and appearance of WMH. Significant differences were seen only in the symptomatic GRN group compared with the other groups with no differences in the MAPT or C9orf72 groups: increased global load of WMH was seen, with WMH located in the frontal and occipital lobes more so than the parietal lobes, and nearer to the ventricles rather than juxtacortical. Although no differences were seen in the presymptomatic group as a whole, in the GRN cohort only there was an association of increased WMH volume with expected years from symptom onset. The appearance of the WMH was also different in the GRN group compared with the other groups, with the lesions in the GRN group being more similar to each other. The presence of WMH in those with progranulin deficiency may be related to the known role of progranulin in neuroinflammation, although other roles are also proposed including an effect on blood-brain barrier permeability and the cerebral vasculature. Future studies will be useful to investigate the longitudinal evolution of WMH and their potential use as a biomarker as well as post-mortem studies investigating the histopathological nature of the lesions.This work was funded by the UK Medical Research Council, the Italian Ministry of Health, and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant (CoEN015). The Dementia Research Centre is supported by Alzheimer's Research UK, Brain Research Trust, and The Wolfson Foundation. This work was supported by the NIHR Queen Square Dementia Biomedical Research Unit and the NIHR UCL/H Biomedical Research Centre. JDR is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH). KD is supported by an Alzheimer's Society PhD Studentship (AS-PhD-2015-005). JBR is supported by the Wellcome Trust (103838) and the NIHR Cambridge Biomedical Research Centre. MM is supported by the Canadian Institutes of Health Research and the Ontario Research Fund. RL is supported by Réseau de médecine génétique appliquée, Fonds de recherche du Québec—Santé (FRQS). FT is supported by the Italian Ministry of Health. DG is supported by the Fondazione Monzino and Italian Ministry of Health, Ricerca Corrente. SS is supported by Cassa di Risparmio di Firenze (CRF 2013/0199) and the Ministry of Health RF-2010-2319722. SO is supported by the Engineering and Physical Sciences Research Council (EP/H046410/1, EP/J020990/1, EP/K005278), the Medical Research Council (MR/J01107X/1), the EU-FP7 project VPH-DARE@IT (FP7-ICT-2011-9-601055), and the National Institute for Health Research University College London Hospitals Biomedical Research Centre (NIHR BRC UCLH/UCL High Impact Initiative BW.mn.BRC10269). JvS is supported by The Netherlands Organisation for Health Research and Development Memorable grant (733050103) and Netherlands Alzheimer Foundation Memorable grant (733050103).info:eu-repo/semantics/publishedVersio

    Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study.

    Get PDF
    Frontotemporal dementia is a heterogeneous neurodegenerative disorder with around a third of cases having autosomal dominant inheritance. There is wide variability in phenotype even within affected families, raising questions about the determinants of the progression of disease and age at onset. It has been recently demonstrated that cognitive reserve, as measured by years of formal schooling, can counteract the ongoing pathological process. The TMEM106B genotype has also been found to be a modifier of the age at disease onset in frontotemporal dementia patients with TDP-43 pathology. This study therefore aimed to elucidate the modulating effect of environment (i.e. cognitive reserve as measured by educational attainment) and genetic background (i.e. TMEM106B polymorphism, rs1990622 T/C) on grey matter volume in a large cohort of presymptomatic subjects bearing frontotemporal dementia-related pathogenic mutations. Two hundred and thirty-one participants from the GENFI study were included: 108 presymptomatic MAPT, GRN, and C9orf72 mutation carriers and 123 non-carriers. For each subject, cortical and subcortical grey matter volumes were generated using a parcellation of the volumetric T1-weighted magnetic resonance imaging brain scan. TMEM106B genotyping was carried out, and years of education recorded. First, we obtained a composite measure of grey matter volume by graph-Laplacian principal component analysis, and then fitted a linear mixed-effect interaction model, considering the role of (i) genetic status; (ii) educational attainment; and (iii) TMEM106B genotype on grey matter volume. The presence of a mutation was associated with a lower grey matter volume (P = 0.002), even in presymptomatic subjects. Education directly affected grey matter volume in all the samples (P = 0.02) with lower education attainment being associated with lower volumes. TMEM106B genotype did not influence grey matter volume directly on its own but in mutation carriers it modulated the slope of the correlation between education and grey matter volume (P = 0.007). Together, these results indicate that brain atrophy in presymptomatic carriers of common frontotemporal dementia mutations is affected by both genetic and environmental factors such that TMEM106B enhances the benefit of cognitive reserve on brain structure. These findings should be considered in evaluating outcomes in future disease-modifying trials, and support the search for protective mechanisms in people at risk of dementia that might facilitate new therapeutic strategies

    Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia

    Get PDF
    © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)The presymptomatic phase of neurodegenerative diseases are characterized by structural brain changes without significant clinical features. We set out to investigate the contribution of functional network resilience to preserved cognition in presymptomatic genetic frontotemporal dementia. We studied 172 people from families carrying genetic abnormalities in C9orf72, MAPT, or PGRN. Networks were extracted from functional MRI data and assessed using graph theoretical analysis. We found that despite loss of both brain volume and functional connections, there is maintenance of an efficient topological organization of the brain's functional network in the years leading up to the estimated age of frontotemporal dementia symptom onset. After this point, functional network efficiency declines markedly. Reduction in connectedness was most marked in highly connected hub regions. Measures of topological efficiency of the brain's functional network and organization predicted cognitive dysfunction in domains related to symptomatic frontotemporal dementia and connectivity correlated with brain volume loss in frontotemporal dementia. We propose that maintaining the efficient organization of the brain's functional network supports cognitive health even as atrophy and connectivity decline presymptomatically.This work was funded by the UK Medical Research Council, the Italian Ministry of Health, and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant [grant number CoEN015]. JBR was supported by the Wellcome Trust [grant number 103838]. JBR, RB, TR, and SJ were supported by the NIHR Cambridge Biomedical Research Centre and Medical Research Council [grant number G1100464]. The Dementia Research Centre at UCL is supported by Alzheimer's Research UK, Brain Research Trust, and The Wolfson Foundation, NIHR Queen Square Dementia Biomedical Research Unit, NIHR UCL/H Biomedical Research Centre and Dementia Platforms UK. JDR is supported by an MRC Clinician Scientist Fellowship [grant number MR/M008525/1] and has received funding from the NIHR Rare Disease Translational Research Collaboration [grant number BRC149/NS/MH]. MM is supported by the Canadian Institutes of Health Research, Department of Medicine at Sunnybrook Health Sciences Centre and the University of Toronto, and the Sunnybrook Research Institute. RL is supported by Réseau de médecine génétique appliquée, Fonds de recherche du Québec—Santé [grant number FRQS]. FT is supported by the Italian Ministry of Health. DG is supported by the Fondazione Monzino and Italian Ministry of Health, Ricerca Corrente. SS is supported by Cassa di Risparmio di Firenze [grant number CRF 2013/0199] and the Ministry of Health [grant number RF-2010-2319722]. JvS is supported by The Netherlands Organisation for Health Research and Development Memorable grant [grant number 733050103] and Netherlands Alzheimer Foundation Memorable grant [grant number 733050103].info:eu-repo/semantics/publishedVersio

    Disease-related cortical thinning in presymptomatic granulin mutation carriers

    Get PDF
    © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.Mutations in the granulin gene (GRN) cause familial frontotemporal dementia. Understanding the structural brain changes in presymptomatic GRN carriers would enforce the use of neuroimaging biomarkers for early diagnosis and monitoring. We studied 100 presymptomatic GRN mutation carriers and 94 noncarriers from the Genetic Frontotemporal dementia initiative (GENFI), with MRI structural images. We analyzed 3T MRI structural images using the FreeSurfer pipeline to calculate the whole brain cortical thickness (CTh) for each subject. We also perform a vertex-wise general linear model to assess differences between groups in the relationship between CTh and diverse covariables as gender, age, the estimated years to onset and education. We also explored differences according to TMEM106B genotype, a possible disease modifier. Whole brain CTh did not differ between carriers and noncarriers. Both groups showed age-related cortical thinning. The group-by-age interaction analysis showed that this age-related cortical thinning was significantly greater in GRN carriers in the left superior frontal cortex. TMEM106B did not significantly influence the age-related cortical thinning. Our results validate and expand previous findings suggesting an increased CTh loss associated with age and estimated proximity to symptoms onset in GRN carriers, even before the disease onset.The authors thank all the volunteers for their participation in this study. SBE is a recipient of the Rio-Hortega post-residency grant from the Instituto de Salud Carlos III, Spain. This study was partially funded by Fundació Marató de TV3, Spain (grant no. 20143810 to RSV). The GENFI study has been supported by the Medical Research Council UK, the Italian Ministry of Health and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant, as well as other individual funding to investigators. KM has received funding from an Alzheimer’s Society PhD studentship. JDR acknowledges support from the National Institute for Health Research (NIHR) Queen Square Dementia Biomedical Research Unit and the University College London Hospitals Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre, the UK Dementia Research Institute, Alzheimer’s Research UK, the Brain Research Trust and the Wolfson Foundation. JCvS was supported by the Dioraphte Foundation grant 09-02-03-00, the Association for Frontotemporal Dementias Research Grant 2009, The Netherlands Organization for Scientific Research (NWO) grant HCMI 056-13-018, ZonMw Memorabel (Deltaplan Dementie, project number 733 051 042), Alzheimer Nederland and the Bluefield project. CG have received funding from JPND-Prefrontals VR Dnr 529-2014-7504, VR: 2015-02926, and 2018-02754, the Swedish FTD Initiative-Schörling Foundation, Alzheimer Foundation, Brain Foundation and Stockholm County Council ALF. DG has received support from the EU Joint Programme – Neurodegenerative Disease Research (JPND) and the Italian Ministry of Health (PreFrontALS) grant 733051042. JBR is funded by the Wellcome Trust (103838) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. MM has received funding from a Canadian Institutes of Health Research operating grant and the Weston Brain Institute and Ontario Brain Institute. RV has received funding from the Mady Browaeys Fund for Research into Frontotemporal Dementia. EF has received funding from a CIHR grant #327387. JDR is an MRC Clinician Scientist (MR/M008525/1) and has received funding from the NIHR Rare Diseases Translational Research Collaboration (BRC149/NS/MH), the Bluefield Project and the Association for Frontotemporal Degeneration. MS was supported by a grant 779257 “Solve-RD” from the Horizon 2020 research and innovation programme.info:eu-repo/semantics/publishedVersio

    Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia

    Get PDF
    © 2020 The Authors. Alzheimer's & Dementia published by Wiley Periodicals, Inc. on behalf of Alzheimer's Association. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Introduction: The presymptomatic phase of neurodegenerative disease can last many years, with sustained cognitive function despite progressive atrophy. We investigate this phenomenon in familial frontotemporal dementia (FTD). Methods: We studied 121 presymptomatic FTD mutation carriers and 134 family members without mutations, using multivariate data-driven approach to link cognitive performance with both structural and functional magnetic resonance imaging. Atrophy and brain network connectivity were compared between groups, in relation to the time from expected symptom onset. Results: There were group differences in brain structure and function, in the absence of differences in cognitive performance. Specifically, we identified behaviorally relevant structural and functional network differences. Structure-function relationships were similar in both groups, but coupling between functional connectivity and cognition was stronger for carriers than for non-carriers, and increased with proximity to the expected onset of disease. Discussion: Our findings suggest that the maintenance of functional network connectivity enables carriers to maintain cognitive performance.K.A.T. is supported by the British Academy Postdoctoral Fellowship (PF160048) and the Guarantors of Brain (101149). J.B.R. is supported by the Wellcome Trust (103838), the Medical Research Council (SUAG/051 G101400), and the Cambridge NIHR Biomedical Research Centre. R. S.‐V. is supported by the Instituto de Salud Carlos III and the JPND network PreFrontAls (01ED1512/AC14/0013) and the Fundació Marató de TV3 (20143810). M.M and E.F are supported by the UK Medical Research Council, the Italian Ministry of Health, and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant, and also a Canadian Institutes of Health Research operating grant (MOP 327387) and funding from the Weston Brain Institute. J.D.R., D.C., and K.M.M. are supported by the NIHR Queen Square Dementia Biomedical Research Unit, the NIHR UCL/H Biomedical Research Centre, and the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility. J.D.R. is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH), the MRC UK GENFI grant (MR/ M023664/1), and The Bluefield Project. F.T. is supported by the Italian Ministry of Health (Grant NET‐2011‐02346784). L.C.J. and J.V.S. are supported by the Association for Frontotemporal Dementias Research Grant 2009, ZonMw Memorabel project number 733050103 and 733050813, and the Bluefield project. R.G. is supported by Italian Ministry of Health, Ricerca Corrente. J.L. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145; SyNergy ‐ ID 390857198). The Swedish contributors C.G., L.O., and C.A. were supported by grants from JPND Prefrontals Swedish Research Council (VR) 529‐2014‐7504, JPND GENFI‐PROX Swedish Research Council (VR) 2019‐02248, Swedish Research Council (VR) 2015‐ 02926, Swedish Research Council (VR) 2018‐02754, Swedish FTD Initiative‐Schorling Foundation, Swedish Brain Foundation, Swedish Alzheimer Foundation, Stockholm County Council ALF, Karolinska Institutet Doctoral Funding, and StratNeuro, Swedish Demensfonden, during the conduct of the study.info:eu-repo/semantics/publishedVersio
    corecore