76 research outputs found
Strong quantum violation of the gravitational weak equivalence principle by a non-Gaussian wave-packet
The weak equivalence principle of gravity is examined at the quantum level in
two ways. First, the position detection probabilities of particles described by
a non-Gaussian wave-packet projected upwards against gravity around the
classical turning point and also around the point of initial projection are
calculated. These probabilities exhibit mass-dependence at both these points,
thereby reflecting the quantum violation of the weak equivalence principle.
Secondly, the mean arrival time of freely falling particles is calculated using
the quantum probability current, which also turns out to be mass dependent.
Such a mass-dependence is shown to be enhanced by increasing the
non-Gaussianity parameter of the wave packet, thus signifying a stronger
violation of the weak equivalence principle through a greater departure from
Gaussianity of the initial wave packet. The mass-dependence of both the
position detection probabilities and the mean arrival time vanish in the limit
of large mass. Thus, compatibility between the weak equivalence principle and
quantum mechanics is recovered in the macroscopic limit of the latter. A
selection of Bohm trajectories is exhibited to illustrate these features in the
free fall case.Comment: 11 pages, 7 figure
Quantum fluctuations for drag free geodesic motion
The drag free technique is used to force a proof mass to follow a geodesic
motion. The mass is protected from perturbations by a cage, and the motion of
the latter is actively controlled to follow the motion of the proof mass. We
present a theoretical analysis of the effects of quantum fluctuations for this
technique. We show that a perfect drag free operation is in principle possible
at the quantum level, in spite of the back action exerted on the mass by the
position sensor.Comment: 4 pages, 1 figure, RevTeX, minor change
Teleology and Realism in Leibniz's Philosophy of Science
This paper argues for an interpretation of Leibniz’s claim that physics requires both mechanical and teleological principles as a view regarding the interpretation of physical theories. Granting that Leibniz’s fundamental ontology remains non-physical, or mentalistic, it argues that teleological principles nevertheless ground a realist commitment about mechanical descriptions of phenomena. The empirical results of the new sciences, according to Leibniz, have genuine truth conditions: there is a fact of the matter about the regularities observed in experience. Taking this stance, however, requires bringing non-empirical reasons to bear upon mechanical causal claims. This paper first evaluates extant interpretations of Leibniz’s thesis that there are two realms in physics as describing parallel, self-sufficient sets of laws. It then examines Leibniz’s use of teleological principles to interpret scientific results in the context of his interventions in debates in seventeenth-century kinematic theory, and in the teaching of Copernicanism. Leibniz’s use of the principle of continuity and the principle of simplicity, for instance, reveal an underlying commitment to the truth-aptness, or approximate truth-aptness, of the new natural sciences. The paper concludes with a brief remark on the relation between metaphysics, theology, and physics in Leibniz
Submm/FIR astronomy in Antarctica: Potential for a large telescope facility
20International audiencePreliminary site testing datasets suggest that Dome C in Antarctica is one of the best sites on Earth for astronomical observations in the 200 to 500 micron regime, i.e. for far-infrared (FIR) and submillimetre (submm) astronomy. We present an overview of potential science cases that could be addressed with a large telescope facility at Dome C. This paper also includes a presentation of the current knowledge about the site characterics in terms of atmospheric transmission, stability, sky noise and polar constraints on telescopes. Current and future site testing campaigns are finally described
Philosophy and Science in Leibniz
This paper explores the question of Leibniz’s contribution to the rise of modern ‘science’. To be sure, it is now generally agreed that the modern category of ‘science’ did not exist in the early modern period. At the same time, this period witnessed a very important stage in the process from which modern science eventually emerged. My discussion will be aimed at uncovering the new enterprise, and the new distinctions which were taking shape in the early modern period under the banner of the old Aristotelian terminology. I will argue that Leibniz begins to theorize a distinction between physics and metaphysics that tracks our distinction between the autonomous enterprise of science in its modern meaning, and the enterprise of philosophy. I will try to show that, for Leibniz, physics proper is the study of natural phenomena in mathematical and mechanical terms without recourse for its explanations to metaphysical notions. This autonomy, however, does not imply for Leibniz that physics can say on its own all that there is to be said about the natural world. Quite the opposite. Leibniz inherits from the Aristotelian tradition the view that physics needs metaphysical roots or a metaphysical grounding. For Leibniz, what is ultimately real is reached by metaphysics, not by physics. This is, in my view, Leibniz’s chief insight: the new mathematical physics is an autonomous enterprise which offers its own kind of explanations but does not exhaust what can (and should) be said about the natural world
- …