43 research outputs found

    Estimating food production in an urban landscape

    Get PDF
    There is increasing interest in urban food production for reasons of food security, environmental sustainability, social and health benefits. In developed nations urban food growing is largely informal and localised, in gardens, allotments and public spaces, but we know little about the magnitude of this production. Here we couple own-grown crop yield data with garden and allotment areal surveys and urban fruit tree occurrence to provide one of the first estimates for current and potential food production in a UK urban setting. Current production is estimated to be sufficient to supply the urban population with fruit and vegetables for about 30 days per year, while the most optimistic model results suggest that existing land cultivated for food could supply over half of the annual demand. Our findings provide a baseline for current production whilst highlighting the potential for change under the scaling up of cultivation on existing land

    Small molecule ambient mass spectrometry imaging by infrared laser ablation metastable-induced chemical ionization

    No full text
    Presented here is a novel ambient ion source termed infrared laser ablation metastable-induced chemical ionization (IR-LAMICI). IR-LAMICI integrates IR laser ablation and direct analysis in real time (DART)-type metastable-induced chemical ionization for open air mass spectrometry (MS) ionization. The ion generation in the IR-LAMICI source is a two step process. First, IR laser pulses impinge the sample surface ablating surface material. Second, a portion of ablated material reacts with the metastable reactive plume facilitating gas-phase chemical ionization of analyte molecules generating protonated or deprotonated species in positive and negative ion modes, respectively. The successful coupling of IR-laser ablation with metastable-induced chemical ionization resulted in an ambient plasma-based spatially resolved small molecule imaging platform for mass spectrometry (MS). The analytical capabilities of IR-LAMICI are explored by imaging pharmaceutical tablets, screening counterfeit drugs, and probing algal tissue surfaces for natural products. The resolution of a chemical image is determined by the crater size produced with each laser pulse but not by the size of the metastable gas jet. The detection limits for an active pharmaceutical ingredient (acetaminophen) using the IR-LAMICI source is calculated to be low picograms. Furthermore, three-dimensional computational fluid dynamic simulations showed improvements in the IR-LAMICI ion source are possible. © 2010 American Chemical Society

    Liquid Extraction Surface Analysis Mass Spectrometry Coupled with Field Asymmetric Waveform Ion Mobility Spectrometry for Analysis of Intact Proteins from Biological Substrates

    Get PDF
    Previously we have shown that liquid extraction surface analysis (LESA) mass spectrometry is suitable for the analysis of intact proteins from a range of biological substrates. Here we show that LESA mass spectrometry may be coupled with high field asymmetric waveform ion mobility spectrometry (FAIMS) for top-down protein analysis directly from thin tissue sections (mouse liver, mouse brain) and from bacterial colonies (Escherichia coli) growing on agar. Incorporation of FAIMS results in significant improvements in signal-to-noise and reduced analysis time. Abundant protein signals are observed in single scan mass spectra. In addition, FAIMS enables gas-phase separation of molecular classes, for example, lipids and proteins, enabling improved analysis of both sets of species from a single LESA extraction
    corecore