3 research outputs found

    Lipoxygenase-induced autoxidative degradation of terrestrial particulate organic matter in estuaries: A widespread process enhanced at high and low latitude

    Get PDF
    International audienceThere exists a substantial amount of research on abiotic (e.g. photochemical) degradation pertaining to organic matter (OM) in the marine realm. While recent research has shown its importance in the degradation of terrestrial particulate OM (TPOM), the mechanisms involved in the induction of autoxidation in estuaries remain unclear. In this study, we propose for the first time the involvement of lipoxygenase (LOX) activity in the induction of autoxidation in mixed waters. The observation of unusual profiles of palmitoleic acid oxidation products and the presence of jasmonic acid in suspended particulate matter (SPM) collected close to the RhĂ´ne River, as well as in samples from the Mackenzie and Amazon rivers, is attributed to strong LOX activity. We show the role played by salinity in the induction of this LOX activity and provide an explanation for the differences in estuarine autoxidation level. At high latitude, lower temperatures and irradiance favor photooxidative damage to higher plant debris and, consequently, hydroperoxide production. High hydroperoxide content strongly contributes to LOX activation in mixed waters. The high resulting LOX activity enhances alkoxyl radical production and thus autoxidation. On the contrary, at low latitude, photooxidative effects are limited, and riverine autoxidation is favored. The higher hydroperoxide content of TPOM may, as a consequence, thereby also contribute to a high level of LOX activity and autoxidation in estuaries. In temperate zones, land and riverine photooxidative and autoxidative damage is limited, unlike estuaries where we observed significant LOX-induced and autox-idative damage.

    Metal Ions and Hydroperoxide Content: Main Drivers of Coastal Lipid Autoxidation in Riverine Suspended Particulate Matter and Higher Plant Debris

    No full text
    Autoxidation is a complex abiotic degradation process, and while it has long been known and well studied in biological compounds, it has been widely overlooked in environmental samples and as a part of environmental processes. With recent observations showing the magnitude of the involvement of autoxidation in coastal environments, it has become critical to better understand how and why this degradative process takes place. At the riverine/marine interface, recent findings evidenced a spike in autoxidation rates upon the arrival of suspended particulate matter in seawater. In this study, we aimed at identifying autoxidation-favoring factors in vitro by analyzing suspended particulate matter incubated under different conditions. If metal ions have long been known to induce autoxidation in biological systems, we show that they indeed induce autoxidation in particulate matter incubated in water, but also that the content in photochemically-produced hydroperoxides in suspended particulate matter is crucial to the induction of its autoxidation in water

    Metal Ions and Hydroperoxide Content: Main Drivers of Coastal Lipid Autoxidation in Riverine Suspended Particulate Matter and Higher Plant Debris

    No full text
    International audienceAutoxidation is a complex abiotic degradation process, and while it has long been known and well studied in biological compounds, it has been widely overlooked in environmental samples and as a part of environmental processes. With recent observations showing the magnitude of the involvement of autoxidation in coastal environments, it has become critical to better understand how and why this degradative process takes place. At the riverine/marine interface, recent findings evidenced a spike in autoxidation rates upon the arrival of suspended particulate matter in seawater. In this study, we aimed at identifying autoxidation-favoring factors in vitro by analyzing suspended particulate matter incubated under different conditions. If metal ions have long been known to induce autoxidation in biological systems, we show that they indeed induce autoxidation in particulate matter incubated in water, but also that the content in photochemically-produced hydroperoxides in suspended particulate matter is crucial to the induction of its autoxidation in water
    corecore