27 research outputs found

    Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand

    Get PDF
    Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time

    High Throughput Petrochronology and Sedimentary Provenance Analysis by Automated Phase Mapping and LAICPMS

    Get PDF
    The first step in most geochronological studies is to extract dateable minerals from the host rock, which is time consuming, removes textural context, and increases the chance for sample cross contamination. We here present a new method to rapidly perform in situ analyses by coupling a fast scanning electron microscope (SEM) with Energy Dispersive X-ray Spectrometer (EDS) to a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LAICPMS) instrument. Given a polished hand specimen, a petrographic thin section, or a grain mount, Automated Phase Mapping (APM) by SEM/EDS produces chemical and mineralogical maps from which the X-Y coordinates of the datable minerals are extracted. These coordinates are subsequently passed on to the laser ablation system for isotopic analysis. We apply the APM1LAICPMS method to three igneous, metamorphic, and sedimentary case studies. In the first case study, a polished slab of granite from Guernsey was scanned for zircon, producing a 60968 Ma weighted mean age. The second case study investigates a paragneiss from an ultra high pressure terrane in the north Qaidam terrane (Qinghai, China). One hundred seven small (25 mm) metamorphic zircons were analyzed by LAICPMS to confirm a 41964 Ma age of peak metamorphism. The third and final case study uses APM1LAICPMS to generate a large provenance data set and trace the provenance of 25 modern sediments from Angola, documenting longshore drift of Orange River sediments over a distance of 1,500 km. These examples demonstrate that APM1LAICPMS is an efficient and cost effective way to improve the quantity and quality of geochronological data

    Indentation of the Pamirs with respect to the northern margin of Tibet: constraints from the Tarim basin sedimentary record

    Get PDF
    The Pamirs represent the indented westward continuation of the northern margin of the Tibetan Plateau, dividing the Tarim and Tajik basins. Their evolution may be a key factor influencing aridification of the Asian interior, yet the tectonics of the Pamir Salient are poorly understood. We present a provenance study of the Aertashi section, a Paleogene to late Neogene clastic succession deposited in the Tarim basin to the north of the NW margin of Tibet (the West Kunlun) and to the east of the Pamirs. Our detrital zircon U-Pb ages coupled with zircon fission track, bulk rock Sm-Nd, and petrography data document changes in contributing source terranes during the Oligocene to Miocene, which can be correlated to regional tectonics. We propose a model for the evolution of the Pamir and West Kunlun (WKL), in which the WKL formed topography since at least ~200 Ma. By ~25 Ma, movement along the Pamir-bounding faults such as the Kashgar-Yecheng Transfer System had commenced, marking the onset of Pamir indentation into the Tarim-Tajik basin. This is coincident with basinward expansion of the northern WKL margin, which changed the palaeodrainage pattern within the Kunlun, progressively cutting off the more southerly WKL sources from the Tarim basin. An abrupt change in the provenance and facies of sediments at Aertashi has a maximum age of 14 Ma; this change records when the Pamir indenter had propagated sufficiently far north that the North Pamir was now located proximal to the Aertashi region
    corecore