169 research outputs found

    VMD DisRg: New User-Friendly Implement for calculation distance and radius of gyration in VMD program

    Get PDF
    Molecular dynamic simulation is a practical and powerful technique for analysis of protein structure. Several programs have been developed to facilitate the mentioned investigation, under them the visual molecular dynamic or VMD is the most frequently used programs. One of the beneficial properties of the VMD is its ability to be extendable by designing new plug-in. We introduce here a new facility of the VMD for distance analysis and radius of gyration of biopolymers such as protein and DNA

    Study of Mir-29a expression in human adipose-derived mesenchymal stem cells treated by platelet-rich plasma

    Get PDF
    Introduction:  Mesenchymal stem cells (MSCs) have differentiation capacity to multi lineage cells, such as osteoblasts. As has been reported recently, osteogenic differentiation can be regulated by microRNAs. Although platelet-rich plasma (PRP) is used in the osteogenic differentiation process, the molecular mechanism of the effect of PRP on the induction of osteogenic differentiation by microRNAs is not well understood. We evaluated the effect of PRP on the expression of mir-29a as a key microRNA on the osteogenic differentiation process of hMSCs. Methods and Results: Mesenchymal cells were isolated from human adipose tissue and differentiated into osteoblasts. The effects of 10% PRP on bone differentiation evaluate by alkaline phosphatase activity and calcium deposition. We also evaluated gene expression of Runx2 and OPN along with the expression of mir-29a by Real-time PCR. Adipose-derived cells with differentiation potential to adipocyte and osteoblast cell lines, show significant increase in osteoblast differentiation rate, enzyme activity, mineralization upregulation of the mir-29a and gene markers when treated by 10% PRP. Conclusion: The present study showed that micro-RNAs such as mir-29a seem to play an active role in the process of bone differentiation during PRP treatment, which in turn affects the signaling pathways of mesenchymal stem cells. Determining the signaling pathways of PRP effect on osteogenic differentiation can optimize the use of this substance in the cell therapy for bone injury and fracture

    The role of Ca2+ ions in the complex assembling of protein Z and Z-dependent protease inhibitor: A structure and dynamics investigation

    Get PDF
    We investigated the solution structure and dynamics of the human anti-coagulation protein Z (PZ) in the complex with protein Zdependent protease inhibitor (ZPI) to order to understand key structural changes in the presence and absence of Ca2+. Structural features of the complete complex of PZ-ZPI are poorly understood due to lack of complete atomic model of the PZ-ZPI complex. We have constructed a model of the complete PZ-ZPI complex and molecular dynamics (MD) simulation of the solvated PZ-ZPI complex with and without Ca2+ was achieved for 100ns. It is consider that the Ω-loop of GLA domains interacts with negatively charged biological membranes in the presence of Ca2+ ions. The PZ exerts its role as cofactor in a similar way. However, we used solvent-equilibrated dynamics to show structural features of the PZ-ZPI complex in the presence and the absence of Ca2+ions. We observed that the distance between the interacting sites of the ZPI with the PZ and the GLA domain decreases in the presence of Ca2+ ions. Further, we postulated that the calculated distance between the dominant plane of the Ca2+ ions and Ser196 of the pseudo-catalytic triad of the PZ is similar to the equivalent distance of FXa. This suggests that the central role of the PZ in the blood coagulation may be to align the inhibitory site of the ZPI with the active site of the FXa, which is depends on the interaction of the calcium bound GLA domain of the PZ with the active membrane

    A prospective study to evaluate the gender prediction of blastocysts by using cell-free DNA within a culture medium

    Get PDF
    Background: Preimplantation genetic diagnosis (PGD) has been used as an option for couples with the possibility of having a baby with a genetic disorder. The common method for performing this test involves isolating 1 cell from day 3 or a few cells from day 5 embryos and performing genetic studies on the cell-extracted DNA. This method is invasive and can cause abortion after implantation in the uterus. Because of this, 2 noninvasive methods for performing a PGD have been studied: PGD using blastocyst fluid and PGD using embryo culture medium. Objective: The aim of this study is to determine the sensitivity of the polymerase chain reaction (PCR) technique to detect the Y chromosome using cell-free DNA within a culture medium for gender prediction of blastocysts. Materials and Methods: In this study, the gender of 30 embryos on day 5 was determined using embryonic DNA extraction from the culture medium and the PCR technique to evaluate the sex-determining region Y and fragile X mental retardation genes. Then, the accuracy was assessed using ultrasound. Results: The results of the PCR technique showed that 7 embryos were male, but an ultrasound revealed that 13 were male. Conclusion: The given results indicated that, because of the low amount of DNA extracted from the culture medium, the diagnosis of the existence of the Y chromosome by this method is still not accurate enough for detecting the gender of the embryo. Key words: Preimplantation diagnosis, Embryo implantation, Culture media, Blastocyst, Polymerase chain reaction

    Homology modeling and molecular dynamics simulation of odonthubuthus doriae (Od1) scorpion toxin in comparison to the BmK M1

    Get PDF
    All of the α-subgroups share similarity in their sequence and structure but different in the toxicity to various voltage-gated sodium channels (VGSCs). We modeled the first 3D structural model of the Od1 based on BmK M1 using homology modeling. The reliability of model for more investigation and compare to BmK M1 has been examined and confirmed. Then the model structure is further refined by energy minimization and molecular dynamics methods. The purpose of this modeling and simulation is comparison toxicity of two mentioned toxins by investigation structural feature of functional regions including core domain, 5-turn and C-terminal which make NC domain. In the one hand, it is intriguing that Od1 in comparison to BmK M1 shows same solvent accessible surface area (SASA) in 5-turn region but a little more exposed and feasibility (more SASA) in C-terminal region and key functional residues of C-terminal such as positive residues Arg58, lys62 and Arg (His)64. These data suggested that Od1 has similarity with BmK M1 but has more toxicity to sodium channel. In the other hand 5-turn proximity of C-terminal to 5-turn in BmK M1with cis peptide bond is less than Od1 without cis peptide bond which is a confirmation with experimental data about BmK M1.A better understanding of the 3-D structure of Od1and comparison to BmK M1 will be helpful for more investigation of functional characters action of natural toxins with a specialized role for VGSCs

    Development of an indirect sandwich ELISA for detection of urinary antigen, using Legionella pneumophila PAL protein

    Get PDF
    Legionella pneumophila peptidoglycan-associated lipoprotein (PAL) protein is an extremely conserved antigen among Legionella species. In this study, rabbit and rat anti-PAL immunoglobulin G antibodies were produced by immunization with purified, recombinant PAL (r-PAL) protein of L. pneumophila serogroup 1 and used as capture and detection antibodies in the PAL antigen-based enzyme-linked immunosorbent assay (ELISA) to detect urinary PAL antigen. Urine samples were obtained from rats experimentally infected with L. pneumophila serogroup 1. The PAL antigen was measured in urine samples of 40 infected and 40 uninfected rats. After choosing the cut-off value of 0.192, the sensitivity and specificity of the PAL antigen-based ELISA were 87.5 and 97.5 %, respectively. The results obtained by PAL antigen base ELISA were compared with those obtained by Biotest. The PAL antigen was detected efficiently by both of the assays and all of the control human urine samples were negative by the ELISA test. The PAL antigen-based ELISA assay was relatively simple to perform, precise, highly sensitive and specific, and reproducible. Based on our data the PAL antigen-based ELISA described here is the first indirect sandwich ELISA for urinary antigen detection which could easily be applied for diagnosis of Legionnaires disease

    CASC11 and PVT1 spliced transcripts play an oncogenic role in colorectal carcinogenesis.

    Get PDF
    Cancer is fundamentally a genetic disorder that alters cellular information flow toward aberrant growth. The coding part accounts for less than 2% of the human genome, and it has become apparent that aberrations within the noncoding genome drive important cancer phenotypes. The numerous carcinogenesis-related genomic variations in the 8q24 region include single nucleotide variations (SNVs), copy number variations (CNVs), and viral integrations occur in the neighboring areas of the MYC locus. It seems that MYC is not the only target of these alterations. The MYC-proximal mutations may act via regulatory noncoding RNAs (ncRNAs). In this study, gene expression analyses indicated that the expression of some PVT1 spliced linear transcripts, CircPVT1, CASC11, and MYC is increased in colorectal cancer (CRC). Moreover, the expression of these genes is associated with some clinicopathological characteristics of CRC. Also, in vitro studies in CRC cell lines demonstrated that CASC11 is mostly detected in the nucleus, and different transcripts of PVT1 have different preferences for nuclear and cytoplasmic parts. Furthermore, perturbation of PVT1 expression and concomitant perturbation in PVT1 and CASC11 expression caused MYC overexpression. It seems that transcription of MYC is under regulatory control at the transcriptional level, i.e., initiation and elongation of transcription by its neighboring genes. Altogether, the current data provide evidence for the notion that these noncoding transcripts can significantly participate in the MYC regulation network and in the carcinogenesis of colorectal cells

    Cloning and periplasmic expression of peptidoglycan-associated lipoprotein (PAL) protein of Legionella pneumophila in Escherichia coli

    Get PDF
    Abstract Introduction and objective: Legionella pneumophila, the etiological agent of Legionnaires’ disease, is an important cause of both community-acquired and nosocomial pneumonia; therefore, rapid diagnosis and early antibiotic treatment of pneumonia are required. Urinary antigen testing to detect Legionella antigen has proven to be the most powerful diagnostic method. Peptidoglycan-associated lipoprotein (PAL) protein of L. pneumophila, as a component of Legionella antigens, will be detected efficiently by the PAL antigen capture assay and is considered as useful diagnostic antigen to diagnose Legionella infection. Because of the transfer of protein to the periplasmic region of Escherichia coli has numerous advantages including separation from cytoplasmic proteins and the concentration of recombinant proteins in periplasm, the aim of this study was to produce periplasmic PAL protein of L. pneumophila in E. coli. Materials and methods: The pal gene of L. pneumophila serogroup 1 was amplified with specific primers, cloned and expressed under pelB signal sequence and T7 lac promoter in pET26b+ plasmid. Results: The cloning was confirmed with digestion and sequencing of recombinant pET- 26b-pal plasmid. The expression of r-PAL protein in cytoplasm and periplasmic space of E. coli was approved by SDS-PAGE and western blotting. Conclusion: The results of this study demonstrated that the r-PAL protein successfully expressed in E. coli
    corecore