4,850 research outputs found

    A unique parametrization of the shapes of secondary dilepton spectra observed in central heavy-ion collisions at CERN-SPS energies

    Get PDF
    A unique parametrization of secondary (thermal) dilepton yields in heavy-ion experiments at CERN-SPS is proposed. This parametrization resembles a thermal qqˉq \bar q annihilation rate. This is inspired by the observation that lepton pair production rates are quantitatively similar, whether expressed in a hadronic or partonic basis. Adding the thermal yield and the background contributions (hadronic cocktail, Drell-Yan, correlated semileptonic decays of open charm) the spectral shapes of the CERES/NA45, NA38, NA50 and HELIOS/3 data from experiments with lead and sulfur beams can be well described.Comment: 23 pages including figures (new version: only new output format

    The interaction of dolomite surfaces with metal impurities: a computer simulation study

    Get PDF
    This study investigates the behaviour of selected, morphologically important surfaces of dolomite (CaMg(CO3)2), using computational modelling techniques. Interatomic potential methods have been used to examine impurity substitution at cationic sites in these surfaces. Environmentally prevalent cations were studied to this end, namely Ni21, Co21, Zn21, Fe21, Mn21 and Cd21, all of which are also found as end-member carbonate minerals. Solid?solution substitution was investigated and showed that Cd and Mn will substitute from their end-member carbonate phase at either dolomite cation site. Mn is found to preferentially substitute at Mg sites, in agreement with experimental findings. For Ni21, Co21 and Zn21, the magnitude of substitution energies is approximately equal for all surfaces, with the exception of the (1014) surface. However, for the larger cations, a far greater disparity in substitution energies is observed. At a stepped surface, analogous substitutions were performed and it was found that substitution energies for all impurity cations were reduced, indicating that uptake is more viable during growth. The predominant surface, the (1014), was solvated with a monolayer of water in order to investigate the influence of hydration on substitution energetics. The addition of water changes the relative preference for substitution of the different cations. Under aqueous conditions, the substitution energy is determined by three competing factors, the relative importance of which cannot be predicted without this type of computational investigation

    Large mass dileptons from the passage of jets through quark gluon plasma

    Get PDF
    We calculate the emission of large mass dileptons originating from the annihilation of quark jets passing through quark gluon plasma. Considering central collisions of heavy nuclei at SPS, RHIC and LHC energies, we find that the yield due to the jet-plasma interaction gets progressively larger as the collision energy increases. We find it to be negligible at SPS energies, of the order of the Drell-Yan contribution and much larger than the normal thermal yield at RHIC energies and up to a factor of ten larger than the Drell-Yan contribution at LHC energies. An observation of this new dilepton source would confirm the occurrence of jet-plasma interactions and of conditions suitable for jet-quenching to take place.Comment: 9 pages, 11 figures; references added, improved calculation, conclusions unchange

    Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units

    Get PDF
    Over many years chemists have established the general principle that two-dimensional chemical structures constructed with pure sp2-carbon atoms will definitely form an aromatic system with delocalized electron density. However, based on a recently proposed chemical structure, graphenylene, this rule may finally be broken. Herein, we predict the properties of a new two-dimensional sp2- carbon network known as graphenylene, which is the first example of a non-delocalized sp2-carbon structure composed of cyclohexatriene units with two quite distinct C–C bonds within a C6 ring. In addition, theoretical calculations demonstrate that graphenylene has periodic pores of 3.2 Å in diameter and is a semiconductor with a narrow direct band gap, making it promising for various applications, such as electronic devices and efficient hydrogen separation. This study provides a new perspective on carbon allotropes, leading to a better understanding of [N]phenylene based organic frameworks, as well as clarifying the relationship between benzene and cyclohexatriene

    Off-shell effects in dilepton production from hot interacting mesons

    Full text link
    The production of dielectrons in reactions involving a_1 mesons and pions is studied. We compare results obtained with different phenomenological Lagrangians that have been used in connection with hadronic matter and finite nuclei. We insist on the necessity for those interactions to satisfy known empirical properties of the strong interaction. Large off-shell effects in dielectron production are found and some consequences for the interpretation of heavy ion data are outlined. We also compare with results obtained using experimentally-extracted spectral functions.Comment: 14 pages, LaTeX2e, 2 figure

    Crystal structure of Cu-Sn-In alloys around the {\eta} phase field studied by neutron diffraction

    Get PDF
    The study of the Cu-Sn-In ternary system has become of great importance in recent years, due to new environmental regulations forcing to eliminate the use of Pb in bonding technologies for electronic devices. A key relevant issue concerns the intermetallic phases which grow in the bonding zone and are determining in their quality and performance. In this work, we focus in the {\eta}-phase (Cu2In or Cu6Sn5) that exists in both end binaries and as a ternary phase. We present a neutron diffraction study of the constitution and crystallography of a series of alloys around the 60 at.% Cu composition, and with In contents ranging from 0 to 25 at.%, quenched from 300\degreeC. The alloys were characterized by scanning electron microscopy, probe microanalysis and high-resolution neutron diffraction. The Rietveld refinement of neutron diffraction data allowed to improve the currently available model for site occupancies in the hexagonal {\eta}-phase in the binary Cu-Sn as well as in ternary alloys. For the first time, structural data is reported in the ternary Cu-Sn-In {\eta}-phase as a function of composition, information that is of fundamental technological importance as well as valuable input data for ongoing modelisations of the ternary phase diagram.Comment: 8 pages, 10 figure

    Photons from axial-vector radiative decay in a hadron gas

    Full text link
    Strange and non-strange axial-vector meson radiative decays contribute to photon production in hadron gas. One- and two-hadron radiative decay modes of b1(1235)b_{1}(1235), a1(1260)a_{1}(1260) and K1(1270)K_{1}(1270) are studied. At 200 MeV temperature and for a narrow range in photon energies they contribute more to the net thermal photon production rate than πρπγ\pi\rho\rightarrow \pi\gamma, ππργ\pi\pi\rightarrow \rho\gamma or ρππγ\rho\rightarrow\pi\pi\gamma. They provide significant contribution to the rate for photon energies as high as 1.5--2.0 GeV. For higher energies they are less important.Comment: 10 pages + 7 figures uuencoded in separate file, MSUCL-92

    Dilepton-tagged jets in relativistic nucleus-nucleus collisions: A case study

    Get PDF
    We study the A+B -> l+ l- + jet +X process in nucleus-nucleus collisions at relativistic energies. The dilepton as well as the jet will pass through the matter produced in such collisions. The recoiling dilepton will carry information about the kinematical features of the jet, and will thus prove to be a very effective tool in isolating in-medium effects such as energy-loss and fragmentation function modifications. We estimate the contributions due to correlated charm and bottom decay and we identify a window where they are small as compared to pairs from the NLO Drell-Yan process.Comment: 7 pages, 9 figures Two figures modified, references adde

    A New Phase of Matter: Quark-Gluon Plasma Beyond the Hagedorn Critical Temperature

    Get PDF
    I retrace the developments from Hagedorn's concept of a limiting temperature for hadronic matter to the discovery and characterization of the quark-gluon plasma as a new state of matter. My recollections begin with the transformation more than 30 years ago of Hagedorn's original concept into its modern interpretation as the "critical" temperature separating the hadron gas and quark-gluon plasma phases of strongly interacting matter. This was followed by the realization that the QCD phase transformation could be studied experimentally in high-energy nuclear collisions. I describe here my personal effort to help develop the strangeness experimental signatures of quark and gluon deconfinement and recall how the experimental program proceeded soon to investigate this idea, at first at the SPS, then at RHIC, and finally at LHC. As it is often the case, the experiment finds more than theory predicts, and I highlight the discovery of the "perfectly" liquid quark-gluon plasma at RHIC. I conclude with an outline of future opportunities, especially the search for a critical point in the QCD phase diagram.Comment: To appear in {\em Melting Hadrons, Boiling Quarks} by Rolf Hagedorn and Johan Rafelski (editor), Springer Publishers, 2015 (open access
    corecore