1,462 research outputs found

    J/psi dissociation by light mesons in an extended Nambu Jona-Lasinio model

    Full text link
    An alternative model for the dissociation of the J/psi is proposed. Chiral symmetry is properly implemented. Abnormal parity interactions and mesonic form factors naturally arise from the underlying quark sub-structure. Analytic confinement for the light quarks is generated by appropriately chosen the quark interaction kernels. Dissociation cross sections of the J/psi by either a pion or a rho meson are then evaluated and discussed.Comment: 24 pages, 13 figures, final versio

    Higher excitations of ω\omega and ϕ\phi in dilepton spectra

    Full text link
    We consider lepton pair production via two-hadron annihilation through various isoscalar vector mesons within hot, baryon-free matter. This is tantamount to constructing effective form factors which we model using a vector-meson-dominance approach and compare with experiment. In particular, we consider the reactions πρe+e\pi\rho\to e^+e^- and KˉK(892)\bar K K^{*}(892) + c.c. e+e\to e^+e^-. We find that ω(1390)\omega(1390) and ϕ(1680)\phi(1680) are visible in the mass spectrum for the thermal production rate above the π+πe+e\pi^{+}\pi^{-} \to e^+e^- tail and even above the πa1e+e\pi a_{1}\to e^+e^- results---both of which were considered important in their respective mass regions.Comment: RevTeX, 9 pages, 6 (uuencoded) figures; to appear in Phys. Rev

    Computational study of LnGaO3 (Ln=La+Gd) perovskites

    Get PDF
    Atomistic simulation techniques have been used to study the thermal properties of perovskite-type LnGaO3 (Ln = La-Gd). A set of interatomic potentials describing interatomic interactions in these compounds was developed and tested over a wide temperature range through utilizing free energyminimization.The predicted dielectric constants, thermal expansion coefficients, phonon density of states and its projections, heat capacity and entropy, elastic moduli, Gruneisen parameters, surface energies for main crystallographic directionsand Debye temperatures are in good agreement with the limited available experimental data. Perovskite-type LnGaO3 (Ln = La-Gd) compounds have been examined under conditions to which substrate materials are typically subjected. Only a narrow region in the phase diagram of LnGaO3 (Ln = La-Gd) and their solid solutions is recommended for use in substrate applications

    Agglutinated foraminifera from the Turonian–Coniacian boundary interval in Europe – paleoenvironmental remarks and stratigraphy

    Get PDF
    Agglutinated foraminiferal assemblages of the Turonian–Coniacian from the GSSP (Global Boundary Stratotype Section and Point) of Salzgitter–Salder (Subhercynian Cretaceous Basin, Germany) and other sections, including Bielefeld–Ostwestfalendamm (Münsterland Cretaceous Basin, Germany) and the Dover–Langdon Stairs (Anglo-Paris Basin, England), from the temperate European shelf realm were studied in order to collect additional stratigraphic and paleoenvironmental information. Stable carbon isotopes were measured for the Bielefeld–Ostwestfalendamm section to establish a reliable stratigraphic correlation with other sections. Highly diverse agglutinated foraminiferal assemblages were obtained from sections in the German basins, whereas the fauna from Dover is less rich in taxa and less abundant. In the German basinal sections, a morphogroup analysis of agglutinated foraminifera and the calculated diversities imply normal marine settings and oligotrophic to mesotrophic bottom-water conditions. Furthermore, acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis. Three acmes of the species Ammolagena contorta are recorded for the Turonian–Coniacian (perplexus to lower striatoconcentricus zones, lower scupini Zone, and hannovrensis Zone) and likely imply a shift to more oligotrophic bottom-water conditions. In the upper scupini Zone below the Turonian–Coniacian boundary, an acme of Bulbobaculites problematicus likely indicates enhanced nutrient availability. In general, agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.</p

    Baryon flow at SIS energies

    Get PDF
    We calculate the baryon flow in the energy range from .25 to 2.5AGeV\le 2.5 AGeV in a relativistic transport model for Ni+NiNi+Ni and Au+AuAu+Au collisions employing various models for the baryon self energies. We find that to describe the flow data of the FOPI Collaboration the strength of the vector potential has to be reduced at high relative momentum or at high density such that the Schr\"odinger- equivalent potential at normal nuclear density decreases above 1 GeV relative kinetic energy and approaches zero above 2 GeV.Comment: 20 pages, LATEX, 7 PostScript figure

    Quark-Gluon Plasma at RHIC and the LHC: Perfect Fluid too Perfect?

    Full text link
    Relativistic heavy ion collisions have reached energies that enable the creation of a novel state of matter termed the quark-gluon plasma. Many observables point to a picture of the medium as rapidly equilibrating and expanding as a nearly inviscid fluid. In this article, we explore the evolution of experimental flow observables as a function of collision energy and attempt to reconcile the observed similarities across a broad energy regime in terms of the initial conditions and viscous hydrodynamics. If the initial spatial anisotropies are very similar for all collision energies from 39 GeV to 2.76 TeV, we find that viscous hydrodynamics might be consistent with the level of agreement for v2 of unidentified hadrons as a function of pT . However, we predict a strong collision energy dependence for the proton v2(pT). The results presented in this paper highlight the need for more systematic studies and a re-evaluation of previously stated sensitivities to the early time dynamics and properties of the medium.Comment: 11 pages, 9 figures, submitted to the New Journal of Physics focus issue "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas

    Omega meson as a chronometer and thermometer in hot-dense hadronic matter

    Full text link
    Changes in the properties of the vector mesons in hot and dense hadronic matter, as produced in heavy ion collisions, lead to the intriguing possibility of the opening of the decay channel \omega \ra \rho \pi, for the omega meson, which is impossible in free space. This along with the channel \omega \pi \ra \pi \pi would result in a decrease in its effective life-time enabling it to decay within the hot zone and act as a chronometer in contradiction to the commonly held opinion and would have implications vis a vis determination of the size of the region through pion interferometry. A new peak and a radically altered shape of the low invariant mass dilepton spectra appears due to different shift in the masses of ρ\rho and ω\omega mesons. The Walecka model is used for the underlying calculation for the sake of illustration.Comment: To appear in Phys. ReV.

    Efficient index handling of multidimensional periodic boundary conditions

    Get PDF
    An efficient method is described to handle mesh indexes in multidimensional problems like numerical integration of partial differential equations, lattice model simulations, and determination of atomic neighbor lists. By creating an extended mesh, beyond the periodic unit cell, the stride in memory between equivalent pairs of mesh points is independent of their position within the cell. This allows to contract the mesh indexes of all dimensions into a single index, avoiding modulo and other implicit index operations.Comment: 2 pages, 0 figure

    Lepton pairs from thermal mesons

    Full text link
    We study the net dielectron production rates from an ensemble of thermal mesons, using an effective Lagrangian to model their interaction. The coupling between the electromagnetic and the hadronic sectors is done through the vector meson dominance approach. For the first time, a complete set of light mesons is considered. We include contributions from decays of the type V~(PS)~\rightarrow~PS~(V)~+~e+ ee^+~e^-, where V is a vector meson and PS is a pseudoscalar, as well as those from binary reactions PS~+~PS, V~+~V, and V~+~PS~ e+e\rightarrow~e^+e^-. Direct decays of the type V~ e+e\rightarrow~e^+ e^- are included and shown to be important. We find that the dielectron invariant mass spectrum naturally divides in distinct regions: in the low mass domain the decays from vector and pseudoscalar mesons form the dominant contribution. The pion--pion annihilation and direct decays then pick up and form the leading signal in an invariant mass region that includes the ρω\rho - \omega complex and extends up to the ϕ\phi. Above invariant mass M M\ \approx~1~GeV other two-body reactions take over as the prominent mechanisms for lepton pair generation. These facts will have quantitative bearing on the eventual identification of the quark--gluon plasma.Comment: In ReVTeX 3.0, 9 figs. available from above email address. McGill 93/8, TPI-MINN-93/19-

    Photons from axial-vector radiative decay in a hadron gas

    Full text link
    Strange and non-strange axial-vector meson radiative decays contribute to photon production in hadron gas. One- and two-hadron radiative decay modes of b1(1235)b_{1}(1235), a1(1260)a_{1}(1260) and K1(1270)K_{1}(1270) are studied. At 200 MeV temperature and for a narrow range in photon energies they contribute more to the net thermal photon production rate than πρπγ\pi\rho\rightarrow \pi\gamma, ππργ\pi\pi\rightarrow \rho\gamma or ρππγ\rho\rightarrow\pi\pi\gamma. They provide significant contribution to the rate for photon energies as high as 1.5--2.0 GeV. For higher energies they are less important.Comment: 10 pages + 7 figures uuencoded in separate file, MSUCL-92
    corecore