78 research outputs found

    A sociocultural analysis of the development of pre-service and beginning teachers’ pedagogical identities as users of technology

    Get PDF
    This paper reports on a study that investigated the pedagogical practices and beliefs of pre-service and beginning teachers in integrating technology into the teaching of secondary school mathematics. A case study documents how one teachers modes of working with technology changed over time and across different school contexts, and identifies relationships between a range of personal and contextual factors that influenced the development of his identity as a teacher. This analysis views teachers learning as increasing participation in sociocultural practices, and uses Valsiners concepts of the Zone of Proximal Development, Zone of Free Movement, and Zone of Promoted Action to offer a dynamic way of theorising teacher learning as identity formation

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    The first two centuries of colonial agriculture in the cape colony: A historiographical review∗

    Full text link

    Author Correction: One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF
    Renal cell carcinoma(RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival

    Protein binding and in vitro serum thromboxane B2 inhibition by flunixin meglumine and meclofenamic acid in dog, goat and horse blood

    No full text
    lunixin was highly protein bound in the serum of dogs (92.2 per cent), gents (84.8 per cent) and horses (86.9 per cent). Meclofenamic acid was also highly protein bound, although there were larger differences between the extent of the binding in dogs (90.3 per cent), goats (84.7 per cent) and horses (99.8 per cent). Both flunixin and meclofenamic acid were potent inhibitors of the in vitro generation of thromboxane (Tx) B-2 in blood. Flunixin inhibited the generation of TxB(2) by 50 per cent of the maximum response (IC50) in dog, goat and horse blood at concentrations of 0.10, 0.02 and 0.04 mu M respectively and by 100 per cent (Imaw) at 2.07, 0.14 and 2.07 mu M respectively. The IC50 values of meclofenamic acid in dogs, goats and horses were 0.77, 0.80 and 0.30 mu M respectively and the Imax values were 3.93, 3.63 and 3.56 mu M respectively. When the concentrations of flunixin were corrected for protein binding, it was estimated that the IC50 of the unbound fractions in dogs, goats and horses were 0.008, 0.003 and 0.005 mu M, respectively. Similarly corrected values for meclofenamic acid were 0.075. 0.122 and 0.001 mu M respectively.Peer reviewe
    corecore