7 research outputs found

    CANVAS: case report on a novel repeat expansion disorder with late-onset ataxia

    Get PDF
    This article presents the case of a 74-year-old female patient who first developed a progressive disease with sensory neuropathy, cerebellar ataxia and bilateral vestibulopathy at the age of 60 years. The family history was unremarkable. Magnetic resonance imaging (MRI) showed atrophy of the cerebellum predominantly in the vermis and atrophy of the spinal cord. The patient was given the syndromic diagnosis of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). In 2019 the underlying genetic cause of CANVAS was discovered to be an intronic repeat expansion in the RFC1 gene with autosomal recessive inheritance. The patient exhibited the full clinical picture of CANVAS and was tested positive for this repeat expansion on both alleles. The CANVAS is a relatively frequent cause of late-onset hereditary ataxia (estimated prevalence 5‑13/100,000). In contrast to the present patient, the full clinical picture is not always present. Therefore, testing for the RFC1 gene expansion is recommended in the work-up of patients with otherwise unexplained late-onset sporadic ataxia. As intronic repeat expansions cannot be identified by next generation sequencing methods, specific testing is necessary

    Role of the repeat expansion size in predicting age of onset and severity in RFC1 disease

    Get PDF
    RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson’s coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-Poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multivariate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset [smaller allele hazard ratio (HR) = 2.06, P < 0.001; larger allele HR = 1.53, P < 0.001] and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, P < 0.001; larger allele HR = 1.71, P = 0.002) or loss of independent walking (smaller allele HR = 2.78, P < 0.001; larger allele HR = 1.60; P < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions [smaller allele: complex neuropathy rate ratio (RR) = 1.30, P = 0.003; cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) RR = 1.34, P < 0.001; larger allele: complex neuropathy RR = 1.33, P = 0.008; CANVAS RR = 1.31, P = 0.009]. Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I–V β = −1.06, P < 0.001; lobules VI–VII β = −0.34, P = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion

    CANVAS: a late onset ataxia due to biallelic intronic AAGGG expansions

    No full text
    The ataxias are a group of disorders that manifest with balance, movement, speech and visual problems. They can arise due to dysfunction of the cerebellum, the vestibular system and/or the sensory neurons. Genetic defects are a common cause of chronic ataxia, particularly common are repeat expansions in this group of conditions. Co-occurrence of cerebellar ataxia with neuropathy and vestibular areflexia syndrome has been termed CANVAS. Although CANVAS is a rare syndrome, on discovery of biallelic expansions in the second intron of replication factor C subunit 1 (RFC1) gene, we and others have found the phenotype is broad and RFC1 expansions are a common cause of late-onset progressive ataxia. We aim to provide a review and update on recent developments in CANVAS and populations, where the disorder has been reported. We have also optimised a protocol for RFC1 expansion screening which is described herein and expanded phenotype after analysing late-onset ataxia patients from around the world

    CANVAS: a late onset ataxia due to biallelic intronic AAGGG expansions

    Get PDF
    The ataxias are a group of disorders that manifest with balance, movement, speech and visual problems. They can arise due to dysfunction of the cerebellum, the vestibular system and/or the sensory neurons. Genetic defects are a common cause of chronic ataxia, particularly common are repeat expansions in this group of conditions. Co-occurrence of cerebellar ataxia with neuropathy and vestibular areflexia syndrome has been termed CANVAS. Although CANVAS is a rare syndrome, on discovery of biallelic expansions in the second intron of replication factor C subunit 1 (RFC1) gene, we and others have found the phenotype is broad and RFC1 expansions are a common cause of late-onset progressive ataxia.We aim to provide a review and update on recent developments in CANVAS and populations, where the disorder has been reported. We have also optimised a protocol for RFC1 expansion screening which is described herein and expanded phenotype after analysing late-onset ataxia patients from around the world

    CANVAS: case report on a novel repeat expansion disorder with late-onset ataxia

    No full text
    This article presents the case of a 74-year-old female patient who first developed a progressive disease with sensory neuropathy, cerebellar ataxia and bilateral vestibulopathy at the age of 60 years. The family history was unremarkable. Magnetic resonance imaging (MRI) showed atrophy of the cerebellum predominantly in the vermis and atrophy of the spinal cord. The patient was given the syndromic diagnosis of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). In 2019 the underlying genetic cause of CANVAS was discovered to be an intronic repeat expansion in the RFC1 gene with autosomal recessive inheritance. The patient exhibited the full clinical picture of CANVAS and was tested positive for this repeat expansion on both alleles. The CANVAS is a relatively frequent cause of late-onset hereditary ataxia (estimated prevalence 5‑13/100,000). In contrast to the present patient, the full clinical picture is not always present. Therefore, testing for the RFC1 gene expansion is recommended in the work-up of patients with otherwise unexplained late-onset sporadic ataxia. As intronic repeat expansions cannot be identified by next generation sequencing methods, specific testing is necessary

    Role of the repeat expansion size in predicting age of onset and severity in RFC1 disease

    No full text
    RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson's coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-Poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multivariate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset [smaller allele hazard ratio (HR) = 2.06, P < 0.001; larger allele HR = 1.53, P < 0.001] and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, P < 0.001; larger allele HR = 1.71, P = 0.002) or loss of independent walking (smaller allele HR = 2.78, P < 0.001; larger allele HR = 1.60; P < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions [smaller allele: complex neuropathy rate ratio (RR) = 1.30, P = 0.003; cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) RR = 1.34, P < 0.001; larger allele: complex neuropathy RR = 1.33, P = 0.008; CANVAS RR = 1.31, P = 0.009]. Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I-V β =-1.06, P < 0.001; lobules VI-VII β =-0.34, P = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion
    corecore