5,434 research outputs found

    The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence

    Full text link
    A numerical model of isotropic homogeneous turbulence with helical forcing is investigated. The resulting flow, which is essentially the prototype of the alpha^2 dynamo of mean-field dynamo theory, produces strong dynamo action with an additional large scale field on the scale of the box (at wavenumber k=1; forcing is at k=5). This large scale field is nearly force-free and exceeds the equipartition value. As the magnetic Reynolds number R_m increases, the saturation field strength and the growth rate of the dynamo increase. However, the time it takes to built up the large scale field from equipartition to its final super-equipartition value increases with magnetic Reynolds number. The large scale field generation can be identified as being due to nonlocal interactions originating from the forcing scale, which is characteristic of the alpha-effect. Both alpha and turbulent magnetic diffusivity eta_t are determined simultaneously using numerical experiments where the mean-field is modified artificially. Both quantities are quenched in a R_m-dependent fashion. The evolution of the energy of the mean field matches that predicted by an alpha^2 dynamo model with similar alpha and eta_t quenchings. For this model an analytic solution is given which matches the results of the simulations. The simulations are numerically robust in that the shape of the spectrum at large scales is unchanged when changing the resolution from 30^3 to 120^3 meshpoints, or when increasing the magnetic Prandtl number (viscosity/magnetic diffusivity) from 1 to 100. Increasing the forcing wavenumber to 30 (i.e. increasing the scale separation) makes the inverse cascade effect more pronounced, although it remains otherwise qualitatively unchanged.Comment: 21 pages, 26 figures, ApJ (accepted

    DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling

    Get PDF
    DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular mechanisms. The decision-making process controlling DSB repair takes place at the step of DNA end resection, the nucleolytic processing of DNA ends, which generates singlestranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB repair mechanism is engaged. Interestingly, nucleosomes—the fundamental unit of chromatin—influence the activity of resection nucleases and nucleosome remodelers have emerged as key regulators of DSB repair. Nucleosome remodelers share a common enzymatic mechanism, but for global genome organization specific remodelers have been shown to exert distinct activities. Specifically, different remodelers have been found to slide and evict, position or edit nucleosomes. It is an open question whether the same remodelers exert the same function also in the context of DSBs. Here, we will review recent advances in our understanding of nucleosome remodelers at DSBs: to what extent nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how these activities affect the DSB repair decision

    Protocell Communication Through the Eyes of Synthetic Organic Chemists

    Get PDF
    The bottom-up fabrication of synthetic cells (protocells) from molecules and materials, is a major challenge of modern chemistry. A significant breakthrough has been the engineering of protocells capable of chemical communication using bio- derived molecules and ex situ stabilised cell machineries. These, however, suffer from short shelf-lives, high costs, and require mild aqueous conditions. In this Concept Article we analyse the chemistry at the heart of protocell communication to highlight new opportunities for synthetic chemists in protocell engineer- ing. Specifically, we (i) categorise the main bio-derived chemical communication machineries in enzyme cascades, DNA strand displacement, and gene-mediated communication; (ii) review the chemistries of these signal transduction machineries; and (iii) introduce new types of bio-inspired, fully synthetic artificial enzymes to replace their natural counterparts. Developing protocells that incorporate synthetic analogues of bio-derived signal transduction machineries will improve the robustness, stability, and versatility of protocells, and broaden their applications to highly strategic fields such as photocatalysis and fine chemicals production

    Flame front propagation IV: Random Noise and Pole-Dynamics in Unstable Front Propagation II

    Full text link
    The current paper is a corrected version of our previous paper arXiv:adap-org/9608001. Similarly to previous version we investigate the problem of flame propagation. This problem is studied as an example of unstable fronts that wrinkle on many scales. The analytic tool of pole expansion in the complex plane is employed to address the interaction of the unstable growth process with random initial conditions and perturbations. We argue that the effect of random noise is immense and that it can never be neglected in sufficiently large systems. We present simulations that lead to scaling laws for the velocity and acceleration of the front as a function of the system size and the level of noise, and analytic arguments that explain these results in terms of the noisy pole dynamics.This version corrects some very critical errors made in arXiv:adap-org/9608001 and makes more detailed description of excess number of poles in system, number of poles that appear in the system in unit of time, life time of pole. It allows us to understand more correctly dependence of the system parameters on noise than in arXiv:adap-org/9608001Comment: 23 pages, 4 figures,revised, version accepted for publication in journal "Combustion, Explosion and Shock Waves". arXiv admin note: substantial text overlap with arXiv:nlin/0302021, arXiv:adap-org/9608001, arXiv:nlin/030201

    A novel type of intermittency in a nonlinear dynamo in a compressible flow

    Full text link
    The transition to intermittent mean--field dynamos is studied using numerical simulations of isotropic magnetohydrodynamic turbulence driven by a helical flow. The low-Prandtl number regime is investigated by keeping the kinematic viscosity fixed while the magnetic diffusivity is varied. Just below the critical parameter value for the onset of dynamo action, a transient mean--field with low magnetic energy is observed. After the transition to a sustained dynamo, the system is shown to evolve through different types of intermittency until a large--scale coherent field with small--scale turbulent fluctuations is formed. Prior to this coherent field stage, a new type of intermittency is detected, where the magnetic field randomly alternates between phases of coherent and incoherent large--scale spatial structures. The relevance of these findings to the understanding of the physics of mean--field dynamo and the physical mechanisms behind intermittent behavior observed in stellar magnetic field variability are discussed.Comment: 19 pages, 13 figure
    • …
    corecore