3 research outputs found

    Bottom trawling impacts on diversity and composition of habitat-forming benthic communities in Hecate Strait, British Columbia

    Get PDF
    Quantitative estimates of fishing gear impacts on vulnerable seafloor habitats are an important component of an ecosystem approach to fisheries management. Currently, procedures do not exist for assessing the regional-scale impact of bottom trawling on benthic ecosystems on Canada\u27s west coast. In this study, I used metrics of diversity and composition to evaluate the response of habitat-forming benthic communities in Hecate Strait, B.C. to varying intensities of bottom trawling. Results demonstrated that trawling effort and substrate are important factors associated with the diversity and composition of habitat-forming species in Hecate Strait. Rockier habitats with less sand/mud substrate and minimal trawling effort displayed the highest abundance and diversity of habitat-forming species. Results will help managers to identify habitats most sensitive to bottom trawling in Hecate Strait and subsequently inform management decisions regarding conservation and protection of these areas

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore