203 research outputs found

    Monodromy transform and the integral equation method for solving the string gravity and supergravity equations in four and higher dimensions

    Full text link
    The monodromy transform and corresponding integral equation method described here give rise to a general systematic approach for solving integrable reductions of field equations for gravity coupled bosonic dynamics in string gravity and supergravity in four and higher dimensions. For different types of fields in space-times of D4D\ge 4 dimensions with d=D2d=D-2 commuting isometries -- stationary fields with spatial symmetries, interacting waves or partially inhomogeneous cosmological models, the string gravity equations govern the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n0n\ge 0 of Abelian vector gauge fields (all depending only on two coordinates). The equivalent spectral problem constructed earlier allows to parameterize the infinite-dimensional space of local solutions of these equations by two pairs of \cal{arbitrary} coordinate-independent holomorphic d×dd\times d- and d×nd\times n- matrix functions u±(w),v±(w){\mathbf{u}_\pm(w), \mathbf{v}_\pm(w)} of a spectral parameter ww which constitute a complete set of monodromy data for normalized fundamental solution of this spectral problem. The "direct" and "inverse" problems of such monodromy transform --- calculating the monodromy data for any local solution and constructing the field configurations for any chosen monodromy data always admit unique solutions. We construct the linear singular integral equations which solve the inverse problem. For any \emph{rational} and \emph{analytically matched} (i.e. u+(w)u(w)\mathbf{u}_+(w)\equiv\mathbf{u}_-(w) and v+(w)v(w)\mathbf{v}_+(w)\equiv\mathbf{v}_-(w)) monodromy data the solution for string gravity equations can be found explicitly. Simple reductions of the space of monodromy data leads to the similar constructions for solving of other integrable symmetry reduced gravity models, e.g. 5D minimal supergravity or vacuum gravity in D4D\ge 4 dimensions.Comment: RevTex 7 pages, 1 figur

    Infinite hierarchies of exact solutions of the Einstein and Einstein-Maxwell equations for interacting waves and inhomogeneous cosmologies

    Get PDF
    For space-times with two spacelike isometries, we present infinite hierarchies of exact solutions of the Einstein and Einstein--Maxwell equations as represented by their Ernst potentials. This hierarchy contains three arbitrary rational functions of an auxiliary complex parameter. They are constructed using the so called `monodromy transform' approach and our new method for the solution of the linear singular integral equation form of the reduced Einstein equations. The solutions presented, which describe inhomogeneous cosmological models or gravitational and electromagnetic waves and their interactions, include a number of important known solutions as particular cases.Comment: 7 pages, minor correction and reduction to conform with published versio

    Discrete singular integrals in a half-space

    Full text link
    We consider Calderon -- Zygmund singular integral in the discrete half-space hZ+mh{\bf Z}^m_{+}, where Zm{\bf Z}^m is entire lattice (h>0h>0) in Rm{\bf R}^m, and prove that the discrete singular integral operator is invertible in L2(hZ+mL_2(h{\bf Z}^m_{+}) iff such is its continual analogue. The key point for this consideration takes solvability theory of so-called periodic Riemann boundary problem, which is constructed by authors.Comment: 9 pages, 1 figur

    Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence

    Full text link
    Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving the infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium "translated" pressure gradient, stable equilibria can either be energy stable, i.e.\ possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes (NEMs). The ETG instability is then shown to arise through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, which unambiguously defines mode signature. In particular, the fast mode turns out to always be a positive energy mode (PEM), whereas the energy of the slow mode can have either positive or negative sign

    Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations

    Full text link
    For the fields depending on two of the four space-time coordinates only, the spaces of local solutions of various integrable reductions of Einstein's field equations are shown to be the subspaces of the spaces of local solutions of the ``null-curvature'' equations constricted by a requirement of a universal (i.e. solution independent) structures of the canonical Jordan forms of the unknown matrix variables. These spaces of solutions of the ``null-curvature'' equations can be parametrized by a finite sets of free functional parameters -- arbitrary holomorphic (in some local domains) functions of the spectral parameter which can be interpreted as the monodromy data on the spectral plane of the fundamental solutions of associated linear systems. Direct and inverse problems of such mapping (``monodromy transform''), i.e. the problem of finding of the monodromy data for any local solution of the ``null-curvature'' equations with given canonical forms, as well as the existence and uniqueness of such solution for arbitrarily chosen monodromy data are shown to be solvable unambiguously. The linear singular integral equations solving the inverse problems and the explicit forms of the monodromy data corresponding to the spaces of solutions of the symmetry reduced Einstein's field equations are derived.Comment: LaTeX, 33 pages, 1 figure. Typos, language and reference correction

    A comparison of pre-impact gas cushioning and Wagner theory for liquid-solid impacts

    Get PDF
    ACKNOWLEDGEMENTS Snizhana Ross was supported by the Development Trust of the University of Aberdeen.Peer reviewedPostprintPublisher PD

    Large scale correlations in normal and general non-Hermitian matrix ensembles

    Full text link
    We compute the large scale (macroscopic) correlations in ensembles of normal random matrices with an arbitrary measure and in ensembles of general non-Hermition matrices with a class of non-Gaussian measures. In both cases the eigenvalues are complex and in the large NN limit they occupy a domain in the complex plane. For the case when the support of eigenvalues is a connected compact domain, we compute two-, three- and four-point connected correlation functions in the first non-vanishing order in 1/N in a manner that the algorithm of computing higher correlations becomes clear. The correlation functions are expressed through the solution of the Dirichlet boundary problem in the domain complementary to the support of eigenvalues. The two-point correlation functions are shown to be universal in the sense that they depend only on the support of eigenvalues and are expressed through the Dirichlet Green function of its complement.Comment: 16 pages, 1 figure, LaTeX, submitted to J. Phys. A special issue on random matrices, minor corrections, references adde

    First passage and arrival time densities for L\'evy flights and the failure of the method of images

    Full text link
    We discuss the first passage time problem in the semi-infinite interval, for homogeneous stochastic Markov processes with L{\'e}vy stable jump length distributions λ(x)α/x1+α\lambda(x)\sim\ell^{\alpha}/|x|^{1+\alpha} (x|x|\gg\ell), namely, L{\'e}vy flights (LFs). In particular, we demonstrate that the method of images leads to a result, which violates a theorem due to Sparre Andersen, according to which an arbitrary continuous and symmetric jump length distribution produces a first passage time density (FPTD) governed by the universal long-time decay t3/2\sim t^{-3/2}. Conversely, we show that for LFs the direct definition known from Gaussian processes in fact defines the probability density of first arrival, which for LFs differs from the FPTD. Our findings are corroborated by numerical results.Comment: 8 pages, 3 figures, iopart.cls style, accepted to J. Phys. A (Lett

    Cavity formation on the surface of a body entering water with deceleration

    Get PDF
    The two-dimensional water entry of a rigid symmetric body with account for cavity formation on the body surface is studied. Initially the liquid is at rest and occupies the lower half plane. The rigid symmetric body touches the liquid free surface at a single point and then starts suddenly to penetrate the liquid vertically with a time-varying speed. We study the effect of the body deceleration on the pressure distribution in the flow region. It is shown that, in addition to the high pressures expected from the theory of impact, the pressure on the body surface can later decrease to sub-atmospheric levels. The creation of a cavity due to such low pressures is considered. The cavity starts at the lowest point of the body and spreads along the body surface forming a thin space between a new free surface and the body. Within the linearised hydrodynamic problem, the positions of the two turnover points at the periphery of the wetted area are determined by Wagner’s condition. The ends of the cavity’s free surface are modelled by the Brillouin–Villat condition. The pressure in the cavity is assumed to be a prescribed constant, which is a parameter of the model. The hydrodynamic problem is reduced to a system of integral and differential equations with respect to several functions of time. Results are presented for constant deceleration of two body shapes: a parabola and a wedge. The general formulation made also embraces conditions where the body is free to decelerate under the total fluid force. Contrasts are drawn between results from the present model and a simpler model in which the cavity formation is suppressed. It is shown that the expansion of the cavity can be significantly slower than the expansion of the corresponding zone of sub-atmospheric pressure in the simpler model. For forced motion and cavity pressure close to atmospheric, the cavity grows until almost complete detachment of the fluid from the body. In the problem of free motion of the body, cavitation with vapour pressure in the cavity is achievable only for extremely large impact velocities

    Analytical solution of second Stokes problem of behaviour of rarefied gas with Cercignani boundary accomodation conditions

    Full text link
    Analytical solution of second Stokes problem of behaviour of rarefied gas with Cercignani boundary accomodation conditions The second Stokes problem about behaviour of rarefied gas filling half-space is analytically solved. A plane, limiting half-space, makes harmonious fluctuations in the plane. The kinetic BGK-equation (Bhatnagar, Gross, Krook) is used. The boundary accomodation conditions of Cercignani of reflexion gaseous molecules from a wall are considered. Distribution function of the gaseous molecules is constructed. The velocity of gas in half-space is found, also its value direct at a wall is found. The force resistance operating from gas on border is found. Besides, the capacity of dissipation of the energy falling to unit of area of the fluctuating plate limiting gas is obtained.Comment: 26 pages, 5 figure
    corecore