55 research outputs found

    The secretory deficit in islets from db/db mice is mainly due to a loss of responding beta cells

    No full text
    Aims/hypothesis: We used the db/db mouse to determine the nature of the secretory defect in intact islets. Methods: Glucose tolerance was compared in db/db and wild-type (WT) mice. Isolated islets were used: to measure insulin secretion and calcium in a two-photon assay of single-insulin-granule fusion; and for immunofluorescence of soluble N-ethylmaleimide-sensitive factor attachment proteins (SNAREs). Results: The 13-18-week-old db/db mice showed a diabetic phenotype. Isolated db/db islets showed a 77% reduction in insulin secretion induced by 15 mmol/l glucose and reductions in the amplitude and rise-time of the calcium response to glucose. Ionomycin-induced insulin secretion in WT but not db/db islets. Immunofluorescence showed an increase in the levels of the SNAREs synaptosomal-associated protein 25 (SNAP25) and vesicle-associated membrane protein 2 (VAMP2) in db/db islets, but reduced syntaxin-1A. Therefore, db/db islets have both a compromised calcium response to glucose and a compromised secretory response to calcium. Two-photon microscopy of isolated islets determined the number and distribution of insulin granule exocytic events. Compared with WT, db/db islets showed far fewer exocytic events (an 83% decline at 15 mmol/l glucose). This decline was due to a 73% loss of responding cells and, in the remaining responsive cells, a 50% loss of exocytic responses per cell. An assay measuring granule re-acidification showed evidence for more recaptured granules in db/db islets compared with WT. Conclusions/interpretation: We showed that db/db islets had a reduced calcium response to glucose and a reduction in syntaxin-1A. Within the db/db islets, changes were manifest as both a reduction in responding cells and a reduction in fusing insulin granules per cell

    A Cytosolic Splice Variant of Cab45 Interacts with Munc18b and Impacts on Amylase Secretion by Pancreatic Acini

    No full text
    We identified in a yeast two-hybrid screen the EF-hand Ca2+-binding protein Cab45 as an interaction partner of Munc18b. Although the full-length Cab45 resides in Golgi lumen, we characterize a cytosolic splice variant, Cab45b, expressed in pancreatic acini. Cab45b is shown to bind 45Ca2+, and, of its three EF-hand motifs, EF-hand 2 is demonstrated to be crucial for the ion binding. Cab45b is shown to interact with Munc18b in an in vitro assay, and this interaction is enhanced in the presence of Ca2+. In this assay, Cab45b also binds the Munc18a isoform in a Ca2+-dependent manner. The endogenous Cab45b in rat acini coimmunoprecipitates with Munc18b, syntaxin 2, and syntaxin 3, soluble N-ethylmaleimide-sensitive factor attachment protein receptors with key roles in the Ca2+-triggered zymogen secretion. Furthermore, we show that Munc18b bound to syntaxin 3 recruits Cab45b onto the plasma membrane. Importantly, antibodies against Cab45b are shown to inhibit in a specific and dose-dependent manner the Ca2+-induced amylase release from streptolysin-O–permeabilized acini. The present study identifies Cab45b as a novel protein factor involved in the exocytosis of zymogens by pancreatic acini

    Chronic stress sensitizes rats to pancreatitis induced by cerulein: Role of TNF-α

    No full text
    AIM: To investigate chronic stress as a susceptibility factor for developing pancreatitis, as well as tumor necrosis factor-α (TNF-α) as a putative sensitizer
    corecore