1,166 research outputs found

    Time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data

    Get PDF
    Extreme-mass-ratio inspirals (EMRIs) of ~ 1-10 solar-mass compact objects into ~ million solar-mass massive black holes can serve as excellent probes of strong-field general relativity. The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational wave signals from apprxomiately one hundred EMRIs per year, but the data analysis of EMRI signals poses a unique set of challenges due to their long duration and the extensive parameter space of possible signals. One possible approach is to carry out a search for EMRI tracks in the time-frequency domain. We have applied a time-frequency search to the data from the Mock LISA Data Challenge (MLDC) with promising results. Our analysis used the Hierarchical Algorithm for Clusters and Ridges to identify tracks in the time-frequency spectrogram corresponding to EMRI sources. We then estimated the EMRI source parameters from these tracks. In these proceedings, we discuss the results of this analysis of the MLDC round 1.3 data.Comment: Amaldi-7 conference proceedings; requires jpconf style file

    Detecting extreme mass ratio inspirals with LISA using time-frequency methods II: search characterization

    Get PDF
    The inspirals of stellar-mass compact objects into supermassive black holes constitute some of the most important sources for LISA. Detection of these sources using fully coherent matched filtering is computationally intractable, so alternative approaches are required. In a previous paper (Wen and Gair 2005, gr-qc/0502100), we outlined a detection method based on looking for excess power in a time-frequency spectrogram of the LISA data. The performance of the algorithm was assessed using a single `typical' trial waveform and approximations to the noise statistics. In this paper we present results of Monte Carlo simulations of the search noise statistics and examine its performance in detecting a wider range of trial waveforms. We show that typical extreme mass ratio inspirals (EMRIs) can be detected at distances of up to 1--3 Gpc, depending on the source parameters. We also discuss some remaining issues with the technique and possible ways in which the algorithm can be improved.Comment: 15 pages, 9 figures, to appear in proceedings of GWDAW 9, Annecy, France, December 200

    Detecting extreme mass ratio inspiral events in LISA data using the Hierarchical Algorithm for Clusters and Ridges (HACR)

    Get PDF
    One of the most exciting prospects for the Laser Interferometer Space Antenna (LISA) is the detection of gravitational waves from the inspirals of stellar-mass compact objects into supermassive black holes. Detection of these sources is an extremely challenging computational problem due to the large parameter space and low amplitude of the signals. However, recent work has suggested that the nearest extreme mass ratio inspiral (EMRI) events will be sufficiently loud that they might be detected using computationally cheap, template-free techniques, such as a time-frequency analysis. In this paper, we examine a particular time-frequency algorithm, the Hierarchical Algorithm for Clusters and Ridges (HACR). This algorithm searches for clusters in a power map and uses the properties of those clusters to identify signals in the data. We find that HACR applied to the raw spectrogram performs poorly, but when the data is binned during the construction of the spectrogram, the algorithm can detect typical EMRI events at distances of up to 2.6\sim2.6Gpc. This is a little further than the simple Excess Power method that has been considered previously. We discuss the HACR algorithm, including tuning for single and multiple sources, and illustrate its performance for detection of typical EMRI events, and other likely LISA sources, such as white dwarf binaries and supermassive black hole mergers. We also discuss how HACR cluster properties could be used for parameter extraction.Comment: 21 pages, 11 figures, submitted to Class. Quantum Gravity. Modified and shortened in light of referee's comments. Updated results consider tuning over all three HACR thresholds, and show 10-15% improvement in detection rat

    Observing the Galaxy's massive black hole with gravitational wave bursts

    Full text link
    An extreme-mass-ratio burst (EMRB) is a gravitational wave signal emitted when a compact object passes through periapsis on a highly eccentric orbit about a much more massive object, in our case a stellar mass object about a 10^6 M_sol black hole. EMRBs are a relatively unexplored means of probing the spacetime of massive black holes (MBHs). We conduct an investigation of the properties of EMRBs and how they could allow us to constrain the parameters, such as spin, of the Galaxy's MBH. We find that if an EMRB event occurs in the Galaxy, it should be detectable for periapse distances r_p < 65 r_g for a \mu = 10 M_sol orbiting object, where r_g = GM/c^2 is the gravitational radius. The signal-to-noise ratio scales as \rho ~ -2.7 log(r_p/r_g) + log(\mu/M_sol) + 4.9. For periapses r_p < 10 r_g, EMRBs can be informative, and provide good constraints on both the MBH's mass and spin. Closer orbits provide better constraints, with the best giving accuracies of better than one part in 10^4 for both the mass and spin parameter.Comment: 25 pages, 17 figures, 1 appendix. One more typo fixe

    Expectations for extreme-mass-ratio bursts from the Galactic Centre

    Get PDF
    When a compact object on a highly eccentric orbit about a much more massive body passes through periapsis it emits a short gravitational wave signal known as an extreme-mass-ratio burst (EMRB). We consider stellar mass objects orbiting the massive black hole (MBH) found in the Galactic Centre. EMRBs provide a novel means of extracting information about the MBH; an EMRB from the Galactic MBH could be highly informative regarding the MBH's mass and spin if the orbital periapsis is small enough. However, to be a useful astronomical tool EMRBs must be both informative and sufficiently common to be detectable with a space-based interferometer. We construct a simple model to predict the event rate for Galactic EMRBs. We estimate there could be on average ~2 bursts in a two year mission lifetime for LISA. Stellar mass black holes dominate the event rate. Creating a sample of 100 mission realisations, we calculate what we could learn about the MBH. On average, we expect to be able to determine the MBH mass to ~1% and the spin to ~0.1 using EMRBs.Comment: 22 pages, 5 figures, 2 appendices. Minor changes to reflect published versio

    Detection Strategies for Extreme Mass Ratio Inspirals

    Full text link
    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these Extreme Mass Ratio Inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for hundreds to thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between Genetic Algorithms and Markov Chain Monte Carlo techniques, along with several time saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.Comment: 10 pages, 4 figures, Updated for LISA 8 Symposium Proceeding

    Gravitational radiation timescales for extreme mass ratio inspirals

    Full text link
    The capture and inspiral of compact stellar masses into massive black holes is an important source of low-frequency gravitational waves (with frequencies of ~1-100mHz), such as those that might be detected by the planned Laser Interferometer Space Antenna (LISA). Simulations of stellar clusters designed to study this problem typically rely on simple treatments of the black hole encounter which neglect some important features of orbits around black holes, such as the minimum radii of stable, non-plunging orbits. Incorporating an accurate representation of the orbital dynamics near a black hole has been avoided due to the large computational overhead. This paper provides new, more accurate, expressions for the energy and angular momentum lost by a compact object during a parabolic encounter with a non-spinning black hole, and the subsequent inspiral lifetime. These results improve on the Keplerian expressions which are now commonly used and will allow efficient computational simulations to be performed that account for the relativistic nature of the spacetime around the central black hole in the system.Comment: 19 pages, 4 figures. Changed in response to referee's report. Accepted for publication in Astrophysical Journa

    Astrometric Effects of Gravitational Wave Backgrounds with non-Luminal Propagation Speeds

    No full text
    A passing gravitational wave causes a deflection in the apparent astrometric positions of distant stars. The effect of the speed of the gravitational wave on this astrometric shift is discussed. A stochastic background of gravitational waves would result in a pattern of astrometric deflections which are correlated on large angular scales. These correlations are quantified and investigated for backgrounds of gravitational waves with sub- and super-luminal group velocities. The statistical properties of the correlations are depicted in two equivalent and related ways: as correlation curves and as angular power spectra. Sub-(super-)luminal gravitational wave backgrounds have the effect of enhancing (suppressing) the power in low-order angular modes. Analytical representations of the redshift-redshift and redshift-astrometry correlations are also derived. The potential for using this effect for constraining the speed of gravity is discussed

    Complete parameter inference for GW150914 using deep learning

    Get PDF
    The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past five years. As the rate of detections grows with detector sensitivity, this poses a growing computational challenge for data analysis. With this in mind, in this work we apply deep learning techniques to perform fast likelihood-free Bayesian inference for gravitational waves. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows---specifically, a neural spline normalizing flow---which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a global set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the prior and detector noise characteristics used for training. By training with the detector noise power spectral density estimated at the time of GW150914, and conditioning on the event strain data, we use the neural network to generate accurate posterior samples consistent with analyses using conventional sampling techniques
    corecore