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Abstract
The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the
past 5 years. To infer the system parameters, iterative sampling algorithms such as MCMC are
typically used with Bayes’ theorem to obtain posterior samples—by repeatedly generating
waveforms and comparing to measured strain data. However, as the rate of detections grows with
detector sensitivity, this poses a growing computational challenge. To confront this challenge, as
well as that of fast multimessenger alerts, in this study we apply deep learning to learn non-iterative
surrogate models for the Bayesian posterior. We train a neural-network conditional density
estimator to model posterior probability distributions over the full 15-dimensional space of binary
black hole system parameters, given detector strain data from multiple detectors. We use the
method of normalizing flows—specifically, a neural spline flow—which allows for rapid sampling
and density estimation. Training the network is likelihood-free, requiring samples from the data
generative process, but no likelihood evaluations. Through training, the network learns a global
set of posteriors: it can generate thousands of independent posterior samples per second for
any strain data consistent with the training distribution. We demonstrate our method by
performing inference on GW150914, and obtain results in close agreement with standard
techniques.

1. Introduction

Since the first detection in September 2015 [1], the LIGO/Virgo Collaboration has published observations of
gravitational waves from 50 compact binary coalescences [2–6], primarily binary black hole mergers, but also
two binary neutron star mergers. In addition, the LIGO/Virgo Collaboration has publicly released around
two dozen additional triggers [7] of events of interest, the details of which have so far not been published.
These observations have had a transformative impact on our understanding of compact objects in the
Universe, facilitated by inferring the parameters of the system (masses, spins, etc) using accurate physical
models of the emitted gravitational waves.

This inference is extremely computationally expensive. LIGO/Virgo currently employ Markov Chain
Monte Carlo and nested-sampling algorithms to obtain samples from the Bayesian posterior distribution
over the parameters [8, 9]. These algorithms are iterative, requiring many waveform simulations for each
independent posterior sample. Although fast waveform models have been developed, run times for single
detections typically take days for binary black holes and weeks for binary neutron stars [2, 10]. In addition,
runs are usually performed using several waveform models to probe any systematic effects, and using the
physically most complete (and thus computationally most costly) waveforms available. These long run times
will become increasingly problematic as instrument sensitivity improves and event rates reach one per day or
higher [11]. For events with multimessenger counterparts (such as binary neutron stars) it is especially
important to have fast sky localization to direct follow-up electromagnetic observations.
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There is an urgent need for new approaches that can generate scientific inferences much more rapidly
than existing pipelines [8, 9]. Deep learning is a promising direction to increase the speed of
gravitational-wave inference by several orders of magnitude, which has received increasing focus in recent
years [12–14]. The goal of these approaches is to build a non-iterative inverse model for the system
parameters given the detector data, which, once trained, can rapidly generate posterior samples without
having to perform waveform simulations. In other words, the idea is to train a neural-network conditional
density estimator q(θ|s) to approximate the Bayesian posterior distribution p(θ|s) of parameter values θ
given detector strain data s.

Neural networks typically have millions of parameters, which are optimized stochastically during training
to minimize an appropriate loss function. With a ‘likelihood-free’ training algorithm, it is never necessary to
draw samples from the posterior or evaluate a likelihood, rather the procedure is generative and just requires
an ability to simulate data sets to construct the training set. Consequently, the training time is comparable to
the sampling time using a standard method. There have been several previous studies on this topic, but these
either simplified the description of the posterior, e.g. by using a Gaussian mixture approximation [15], or
simplified the input, e.g. using a reduced space of parameters and a single detector [16].

In a previous paper [17], we used a neural-network architecture called a conditional variational
autoencoder (CVAE) [18, 19] combined with normalizing flows [20–23] to learn the posterior distribution
over all parameters of an aligned-spin quasi-circular merger observed with a single gravitational-wave
detector. With a single detector we could not recover the full set of waveform parameters, and all data sets
analyzed were artificially generated with advanced LIGO design-sensitivity noise [24].

In this study, we develop an approach that can, for the first time, be used to fully analyze real data from
the LIGO/Virgo interferometers. We describe a neural-network architecture, based on normalizing flows
alone, that can generate posteriors over the full D= 15 dimensional parameter space of quasi-circular binary
inspirals, using input data from multiple gravitational-wave detectors. We apply this network to analyze
observed interferometer data surrounding the first gravitational-wave detection, GW150914. We show that
we obtain an accurate Bayesian posterior distribution over the system parameters, in the sense that it is in
close agreement with results of conventional methods. This is the first demonstration that deep-learning
methods can be used in a realistic setting to produce fast-and-accurate scientific inference on real
gravitational-wave interferometer data. We thereby establish a new benchmark in fast-and-accurate
gravitational-wave inference, and also describe methods that could be applied to other inference problems in
experimental physics.

2. Neural network model

Our aim is to train a neural-network conditional density estimator q(θ|s) to approximate the
gravitational-wave posterior p(θ|s). To this end, q(θ|s)must have sufficient flexibility to capture the detailed
shape of the true posterior over parameters θ, as well as the dependence on the complicated strain data s. We
use the method of normalizing flows.

A normalizing flow f is an invertible mapping on a sample space with simple Jacobian determinant [20].
For a conditional distribution, the flow must depend on s, so we denote it f s. The idea is to train the flow so
that it maps a simple ‘base’ distribution π(u) into the far more complex q(θ|s). We define the conditional
distribution in terms of the flow by

q(θ|s) = π( f−1
s (θ))

∣∣∣det J−1
fs

∣∣∣ , (1)

which is based on the change of variables rule for probability distributions. π(u) should be chosen such that
it can be easily sampled and its density evaluated; we will always take it to be standard multivariate normal of
the same dimension D as the sample space.

By the properties of a normalizing flow, q(θ|s) inherits the nice properties of π(u). Indeed, to draw a
sample, one first samples u~π(u), and then sets θ= f s(u); it follows that θ ∼ q(θ|s). To evaluate the
conditional density, one uses (1); the right hand side may be evaluated by the defining properties that f s is
invertible and has simple Jacobian determinant.

Normalizing flows are under active development in computer science, and are usually represented by
neural networks. Neural networks are very flexible function approximators, so they can give rise to complex
conditional densities. Our previous study [17] used a masked autoregressive flow [22] with affine
transformations. In the present study, we use a much more powerful neural spline flow [25]. We use the
original neural spline flow implementation [29], illustrated in figure 1. We now give a brief summary.

The flow is a composition of ‘coupling transforms’ cs(u), each of which transform elementwise half of the
parameters (say, ud+ 1:D) conditional upon the other half (u1:d) as well as s [31], i.e.:
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Figure 1. Overall structure of the normalizing flow [25] from u 7→ θ, with optimal hyperparameter choices indicated. Red
connections are invertible. The residual network is made up of nblocks residual blocks, each with two fully-connected hidden layers
of nhidden units. Prior to each linear transformation [26], we inserted batch-normalization layers to speed training [27] and
exponential linear units for nonlinearity [28]. Each block is also conditioned on s.

cs,i(u) =

{
ui if i⩽ d,

ci(ui;u1:d, s) if i> d.
(2)

If ci is invertible and differentiable with respect to ui, then it follows immediately that the coupling transform
is a normalizing flow. By composing nflows such transforms, and permuting the indices of u in between, a very
flexible flow is obtained.

The neural spline coupling transform [25] takes each ci to be a monotonically-increasing piecewise

function, defined by a set of knots {(u(k)i , c(k)i )}Kk=0 and positive-valued derivatives {δ
(k)
i }Kk=0, between which

are interpolated rational-quadratic (RQ) functions. The knots and derivatives are output from a residual
neural network [32], which takes as input u1:d and s; details are given in figure 1. The RQ spline is
differentiable and has analytic inverse, so it satisfies the properties of a coupling transform.

3. Training

The conditional density estimator q(θ|s)must be trained to approximate as closely as possible the
gravitational-wave posterior p(θ|s). We do this by tuning the neural-network parameters to minimize a loss
function, the expected value (over s) of the cross-entropy between the true and model distributions,

L=−
ˆ

dsp(s)

ˆ
dθp(θ|s) logq(θ|s)

=−
ˆ

dθp(θ)

ˆ
dsp(s|θ) logq(θ|s). (3)

On the second line we used Bayes’ theorem to express L in a form that involves an integral over the
likelihood rather than the posterior; this is a key simplification which means posterior samples are
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Table 1. Parameters characterizing quasicircular black hole binaries.

Parameter Description Prior Extrinsic

(m1,m2) Component masses (10 M⊙,80 M⊙),m1 ⩾m2 No
ϕc Reference phase [0, 2π] No
tc,geocent Time of coalescence (−0.1 s,0.1 s) Yes
dL Luminosity distance (100 Mpc,1000 Mpc) Yes
(a1,a2) Dimensionless spin magnitudes [0, 0.88] No
(θ1,θ2,ϕ12,ϕJL) Spin angles standard [30] No
θJN Inclination relative to line-of-sight [0,π], uniform in sine No
ψ Polarization angle [0,π] Yes
(α, δ) Sky position Uniform over sky Yes

not needed for training. We evaluate the integral (3) on a minibatch of training data with a Monte Carlo
approximation,

L≈− 1

N

N∑
i=1

logq(θ(i)|s(i)), (4)

where θ(i)∼p(θ), s(i) ∼ p(s|θ(i)), and N is the number of samples in the minibatch. We then use
backpropagation (the chain rule) to compute the gradient with respect to network parameters, and minimize
L stochastically on minibatches using the Adam optimizer [33].

To obtain a training pair (θ(i), s(i)), we draw θ(i) from the prior, we generate a waveform h(θ(i)), and we
add a noise realization to obtain s(i). Waveform generation is too costly to perform in real time during
training, so we adopt a hybrid approach where we perform the expensive calculations in advance. Before
training, we sample ‘intrinsic’ parameters (see table 1) and we generate the associated plus and cross

waveform polarizations h(i)+,×. At each training epoch, we sample new ‘extrinsic’ parameters for every h(i)+,×.
Applying the extrinsic parameters (which is cheap) we obtain waveforms in the detectors. Finally, we also add
noise realizations in real time during training. By drawing extrinsic parameters and noise realizations during
training, we effectively increase the size of the training set. We used 106 sets of intrinsic parameters, which
was sufficient to avoid overfitting.

3.1. Prior
We perform inference over the full D= 15 dimensional set of precessing quasi-circular binary black hole
parameters. These parameters are listed in table 1. As indicated in the table, five of these parameters are
considered extrinsic, so they are sampled during training; the remaining intrinsic parameters are sampled in
advance of training.

Our choice of prior ranges is based on astrophysical as well as computational considerations. For
example, for the component masses, the prior range covers most of the binary black hole coalescences
detected to date [2, 6]. The lower bound of 10 M⊙ arises because the in-band inspiral time scales as
T∝M−5/3, whereM= (m1m2)

3/5/(m1 +m2)
1/5 is the chirp mass, so lighter binaries would require much

longer data segments, which is more costly. Likewise, the time of coalescence prior is determined by the
accuracy of detection pipelines. Although a distance prior uniform in the comoving source frame [9] would
be most physical, we adopted a uniform prior over dL and an upper bound of 1000 Mpc to more uniformly
cover the parameter space and improve training. We applied the physical prior at inference time by
reweighting samples. We also rescaled all parameters to have zero mean and unit variance.

3.2. Strain data
For likelihood-free training, we require simulated s(i) that arise from the data generative process,
s(i) ∼ p(s|θ(i)). We assume stationary Gaussian noise, so the gravitational-wave likelihood function is known
explicitly, but the method applies even when this is not the case—e.g. with non-Gaussian noise—as long as
one can simulate data.

We generate training waveforms using the IMRPhenomPv2 frequency-domain precessing model [34–36].
We take a frequency range of [20, 1024] Hz, and a waveform duration of 8 s. This frequency range is based on
the sensitivity curve of the LIGO and Virgo instruments, and the 8 s waveform duration is adequate for

binary black hole mergers consistent with our prior. We then whiten h(i)+,× using the noise power spectral
density (PSD) estimated from 1024 s of detector data prior to GW150914 (separately for each detector), as is
standard in LIGO/Virgo analyses [8]. Following [15], we compress the whitened waveforms to a
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Figure 2. Training and validation loss for each epoch. The closeness of these curves indicates that there is very little overfitting.
(Note that the validation loss is in fact slightly lower than the training loss; this is because the batch normalization layers have
different behavior during training and testing.)

reduced-order representation; we use a singular value decomposition (SVD), and keep the first nSVD = 100
components in each detector.

During training, we sample extrinsic parameters and generate detector signals. This requires a trivial

rescaling to apply dL, and linear combinations of h(i)+,× to project onto the antenna patterns for the two LIGO
detectors. To apply time delays in the reduced-basis (RB) representation, we follow of [37, 38] and
pre-prepare a grid of time-translation matrix operators that act on vectors of RB coefficients, using cubic
interpolation for intermediate times. Since the transformation to RB space is a rotation, we add white noise
directly to the RB coefficients of the whitened waveforms to obtain s(i). Finally, the noisy strain data is
standardized to have zero mean and unit variance in each component.

4. Results

We trained for 500 epochs with a batch size of 512. The initial learning rate for the Adam optimizer was
0.0002, and we annealed to zero using cosine annealing [39]. We performed a search over network
hyperparameters, and listed those with best performance (measured by final validation loss) in figure 1. We
reserved 10% of the training set for validation, and found no evidence of overfitting (see figure 2). With an
NVIDIA Quadro P4000 GPU, training took≈6 days.

To perform inference on GW150914, we took 8 s of detector data containing the signal and expressed it
in the RB representation. We then drew samples from the base space, and applied the normalizing flow
conditioned on the strain data to obtain samples from q(θ|s). This produced samples at a rate of 5000 per
second. We benchmarked these against samples produced by bilby [9, 40] with the dynesty sampler [41].

Our main result is presented in figure 3, which compares the neural network and bilby posteriors. Both
distributions are in very close agreement, with minor differences in θJN and the sky position, where the
neural network gives more support to secondary modes. With more training or a larger network, we expect
even better convergence.

Although our demonstration has focused on GW150914, the network was trained to generate any
posterior consistent with the training distribution. In figure 4 we show a P–P plot constructed from 100
artificial injections with parameters drawn from the prior, and noise realizations consistent with the training
PSD. For each parameter, this plots the cumulative distribution function of the percentile scores of the true
parameters within the marginalized 1D posteriors. Since the percentiles should be distributed uniformly, the
diagonal curves confirm that the network is properly sampling the posteriors.

In our experiments, we also varied nSVD, and we found slightly reduced performance as this was
increased. This indicates that, although with less compression it should be possible to produce tighter
posteriors, better network optimization is required to take full advantage. Indeed, subleading SVD elements
contain mostly noise, which makes training more difficult.
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Figure 3.Marginalized 1D and 2D posterior distributions over a subset of parameters, comparing the normalizing flow (orange)
and bilby dynesty (blue). Contours represent 50% and 90% credible regions. The inset shows the sky position, with rejection
sampling used to obtain unweighted neural network samples.

5. Conclusions

In this study, we demonstrated for the first time that deep neural networks can accurately infer all 15 binary
black hole parameters from real gravitational-wave strain data, including accurate estimates of uncertainties.
The network learns a surrogate for the inverse model, so that generating a posterior sample requires just a
forward pass through the neural network, which takes as input the detector data. Once the network is
trained, inference is therefore extremely fast, generating 5000 independent samples per second.

This study is the first to demonstrate the use of neural networks for gravitational-wave inference in a
realistic setting. Past studies [15–17] have all been subject to a number of restrictions: they all restricted
analysis to a subset of parameters, they assumed design sensitivity noise, and they did not analyze real data.
The form of the posteriors was also restricted in all of these studies, either by explicit restriction to Gaussian
distributions [15], or by not having sufficiently flexible neural density estimators [16, 17]. All of these
restrictions have been lifted in the present study, and we have demonstrated results in very close agreement
with standard samplers. This came about in large part because of the use of the neural spline flow
architecture, but also due to the careful strain data compression using SVD and sampling of extrinsic
parameters during training.

This work should have significant impact on gravitational-wave data analysis: rapid parameter estimation
is critical for multimessenger follow-up and for confronting the expected high rate of future detections. An
advantage of our approach is that waveform generation is done in advance of training and inference, rather
than at sampling time as for conventional methods. Thus, waveform models that include more physics but
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Figure 4. P–P plot for 100 artificial strain data sets analyzed by the neural network. For each injection and 1D posterior
distribution, we compute the percentile value of the injected parameter. The figure shows the cumulative distribution function of
the injections for each parameter, which should lie close to the diagonal if the network is performing properly. KS test p-values are
given in the legend.

may be slower to evaluate [42] can be used to analyze data in the same time as faster models. Going forward,
a major priority will be to extend the prior range over masses to include binary neutron stars [43], since
rapid sky localization for these events is important for finding electromagnetic counterparts. This will
require improved compression of the strain data, possibly involving convolutional embedding networks.

The network we presented is tuned to a particular noise PSD—in this case, estimated just prior to
GW150914. Although the noise characteristics of the LIGO and Virgo detectors are mostly stable during an
observing run, they do vary slightly from event to event, so in future studies these variations should be taken
into account. Indeed, we would like to fully amortize training costs by building a conditional density
estimator that can do inference on any event without retraining for the change in PSD. One approach would
be to condition the model on PSD information: during training, waveforms would be whitened with respect
to a PSD drawn from a distribution representing the variation in detector noise from event to event, and
(a summary of) this PSD information would be passed to the network as additional context. (PSD samples
can be obtained from detector data at random times.) For inference, PSD information would then be passed
along with the whitened strain data.

Likelihood-free inference methods are also an avenue to move beyond the idealization of stationary
Gaussian noise. This approximation is imposed in standard approaches by the requirement of having a
likelihood function. However, since training the conditional density estimator only requires the ability to
simulate data, it should be possible to do inference even in the presence of non-Gaussian noise artifacts such
as glitches. One could, for instance, generate training data by injecting simulated waveforms into real
detector noise.

In contrast to CVAEs used in past studies [16, 17], normalizing flows have the advantage of estimating
the density directly, without any need to marginalize over latent variables. This means that the loss function
can be taken to be the cross-entropy (4) rather than an upper bound [18, 19]. Moreover, since q(θ|s) is a
normalized probability distribution, the Bayesian evidence can be obtained as a byproduct. The performance
we achieved without latent variables in this study was made possible by the use of a more powerful
normalizing flow [25] compared to [17]. As new and more powerful normalizing flows are developed by
computer scientists in the future, they will be straightforward to deploy to further improve the performance
and capabilities of deep learning for gravitational-wave parameter estimation.
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