56 research outputs found

    Measurements of Six-Body Hadronic Decays of the D^0 Charmed Meson

    Get PDF
    Using data collected by the FOCUS experiment at Fermilab, we report the discovery of the decay modes D^0 --> K- pi+ pi+ pi+ pi- pi- and D^0 --> pi+ pi+ pi+ pi- pi- pi-. With a sample of 48 +/- 10 reconstructed D^0 --> K- pi+ pi+ pi+ pi- pi- decays and 149 +/- 17 reconstructed D^0 --> pi+ pi+ pi+ pi- pi- pi- decays, we measure the following relative branching ratios: Γ(D0Kπ+π+π+ππ)/Γ(D0Kπ+π+π)=(2.70±0.58±0.38)×103{\Gamma (D^0 \to K^- \pi^+ \pi^+ \pi^+ \pi^- \pi^-) / \Gamma (D^0 \to K^- \pi^+ \pi^+ \pi^-)} = (2.70 \pm 0.58 \pm 0.38) \times 10^{-3} Γ(D0π+π+π+πππ)/Γ(D0Kπ+π+π)=(5.23±0.59±1.35)×103{\Gamma (D^0 \to \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^-) / \Gamma (D^0 \to K^- \pi^+ \pi^+ \pi^-)} = (5.23 \pm 0.59 \pm 1.35) \times 10^{-3} Γ(D0π+π+π+πππ)/Γ(D0Kπ+π+π+ππ)=1.93±0.47±0.48{\Gamma (D^0 \to \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^-) / \Gamma (D^0 \to K^- \pi^+ \pi^+ \pi^+ \pi^- \pi^-)} = 1.93 \pm 0.47 \pm 0.48 The first errors are statistical and the second are systematic. The branching fraction of the Cabibbo suppressed six-body decay mode is measured to be a factor of two higher than the branching fraction of the Cabibbo favored six-body decay mode.Comment: To be submitted to Phys. Lett.

    Measurement of the Ratio of the Vector to Pseudoscalar Charm Semileptonic Decay Rate \Gamma(D+ > ANTI-K*0 mu+ nu)/\Gamma(D+ > ANTI-K0 mu+ nu)

    Full text link
    Using a high statistics sample of photo-produced charm particles from the FOCUS experiment at Fermilab, we report on the measurement of the ratio of semileptonic rates \Gamma(D+ > ANTI-K pi mu+ nu)/\Gamma(D+ > ANTI-K0 mu+ nu)= 0.625 +/- 0.045 +/- 0.034. Allowing for the K pi S-wave interference measured previously by FOCUS, we extract the vector to pseudoscalar ratio \Gamma(D+ > ANTI-K*0 mu+ nu)/\Gamma(D+ > ANTI-K0 mu+ nu)= 0.594 +/- 0.043 +/- 0.033 and the ratio \Gamma(D+ > ANTI-K0 mu+ nu)/\Gamma(D+ > K- pi+ pi+)= 1.019 +/- 0.076 +/- 0.065. Our results show a lower ratio for \Gamma(D > K* \ell nu})/\Gamma(D > K \ell nu) than has been reported recently and indicate the current world average branching fractions for the decays D+ >ANTI-K0(mu+, e+) nu are low. Using the PDG world average for B(D+ > K- pi+ pi+) we extract B(D+ > ANIT-K0 mu+ nu)=(9.27 +/- 0.69 +/- 0.59 +/- 0.61)%.Comment: 15 pages, 1 figur

    Study of the doubly and singly Cabibbo suppressed decays D+ --> K+ pi+ pi- and Ds+ --> K+ pi+ pi-

    Full text link
    Using data collected by the high energy photoproduction experiment FOCUS at Fermilab we study the doubly and singly Cabibbo suppressed decays D+ and Ds+ --> K+ pi+ pi-. Branching ratios and Dalitz plot analyses are performed.Comment: 14 pages, paper to be submitted to Phys.Lett.

    Evolving the narrative for protecting a rapidly changing ocean, post‐COVID‐19

    Get PDF
    The ocean is the linchpin supporting life on Earth, but it is in declining health due to an increasing footprint of human use and climate change. Despite notable successes in helping to protect the ocean, the scale of actions is simply not now meeting the overriding scale and nature of the ocean's problems that confront us. Moving into a post-COVID-19 world, new policy decisions will need to be made. Some, especially those developed prior to the pandemic, will require changes to their trajectories; others will emerge as a response to this global event. Reconnecting with nature, and specifically with the ocean, will take more than good intent and wishful thinking. Words, and how we express our connection to the ocean, clearly matter now more than ever before. The evolution of the ocean narrative, aimed at preserving and expanding options and opportunities for future generations and a healthier planet, is articulated around six themes: (1) all life is dependent on the ocean; (2) by harming the ocean, we harm ourselves; (3) by protecting the ocean, we protect ourselves; (4) humans, the ocean, biodiversity, and climate are inextricably linked; (5) ocean and climate action must be undertaken together; and (6) reversing ocean change needs action now. This narrative adopts a ‘One Health’ approach to protecting the ocean, addressing the whole Earth ocean system for better and more equitable social, cultural, economic, and environmental outcomes at its core. Speaking with one voice through a narrative that captures the latest science, concerns, and linkages to humanity is a precondition to action, by elevating humankind's understanding of our relationship with ‘planet Ocean’ and why it needs to become a central theme to everyone's lives. We have only one ocean, we must protect it, now. There is no ‘Ocean B’

    Endoluminal repair of anastomotic false popliteal aneurysm using the Wallgraft endoprosthesis

    No full text
    The aim of this study was to present the endoluminal repair of a false anastomotic popliteal aneurysm on a previous polytetrafluoroethylene (PTFE) above knee bypass using a Wallgraft endoprosthesis. A 53-year-old man who underwent a left femoro-popliteal above knee PTFE bypass 13 years before was admitted with a painful pulsatile mass in the above knee area. Nine months previously he developed sudden pain around the knee extending to the foot associated with coldness and numbness after he was handling some fishing gear in a crouching position for about 1 hour, but this episode spontaneously resolved. Duplex scanning and angiography revealed a 3¥2.5 cm false aneurysm, which was successfully treated by deploying a Wallgraft endoprosthesis as the patient declined surgical repair. The graft was detected as being occluded on the 3-month follow-up but no further action was taken because the patient experienced only non-limiting claudication and he refused again surgical treatment. Endoluminal repair of perianastomotic false aneurysms in the popliteal artery with Wallgraft endoprosthesis seems feasible and safe, but until its durability is validated in larger series surgical repair remains the treatment of choice

    Swimming speed of three species of Alexandrium as determined by digital in-line holography.

    Get PDF
    Digital in-line holographic (DIH) microscopy was used to track motility in several related species of the marine dinoflagellate Alexandrium in response to temperature after acclimation at selected temperatures. Numerical reconstruction of DIH holograms yielded high-contrast three-dimensional images of the trajectories of many motile cells swimming simultaneously throughout the sample volume. Swimming speed and trajectory were determined for clonal isolates of A. ostenfeldii, A. minutum and A. tamarense within the temperature range from 8 to 24\ub0C. The strains of these species revealed differences in temperature optima for growth and tolerance that were a function of both acclimation responses and genetic factors reflecting the origin of the isolates. The fastest swimming speeds were recorded at 24\ub0C for cells of A. minutum. Acclimated strains of all three species swam significantly slower at lower temperatures, although fastest swimming speeds did not always occur at temperature optima for growth. Aged cells from stationary phase cultures swam more slowly than cells in exponential growth phase. Doublets from a rapidly dividing culture swam faster than singlets from the same culture, confirming the propulsive advantage of paired cells. Holographic microscopy is a powerful tool for the acquisition of detailed observations of swimming behaviour of microalgal cells in the form of three-dimensional trajectories over the appropriate temporal (sub-second) and spatial (micrometer) scales.Peer reviewed: NoNRC publication: Ye
    corecore