19 research outputs found

    Restoring robust binary switching operation and exceptional point using long-period grating-assisted parity-time symmetric couplers

    Get PDF
    International audienceThe impact of imbalance in waveguides propagation constants among Parity-Time symmetric coupled waveguides and/or of a complex-valued coupling coefficient is assessed. The narrow tolerance found implies that attempts to tightly control waveguides parameters appear as elusive because of fabrication technology limitations, calling for more feasible mitigation avenues. It is shown that a grating-assisted Parity-Time symmetric coupler design restores both technologically robust binary switching operation and exceptional point. In addition the proposed design is compatible with birefringence compensation techniques providing polarization-independent operation as well as coupling and/or gain-loss profile modulation techniques that extend the control of switching operation in the Parity-Time symmetric phase. Using wavelength as an additional tuning parameter near exceptional points opens promising avenues for manipulating the trajectory on Riemann sheets in topological photonics applications

    Ultra-fast optical ranging using quantum-dash mode-locked laser diodes

    Get PDF
    Laser-based light detection and ranging (LiDAR) is key to many applications in science and industry. For many use cases, compactness and power efficiency are key, especially in high-volume applications such as industrial sensing, navigation of autonomous objects, or digitization of 3D scenes using hand-held devices. In this context, comb-based ranging systems are of particular interest, combining high accuracy with high measurement speed. However, the technical complexity of miniaturized comb sources is still prohibitive for many applications, in particular when high optical output powers and high efficiency are required. Here we show that quantum-dash mode-locked laser diodes (QD-MLLD) offer a particularly attractive route towards high-performance chip-scale ranging systems. QD-MLLDs are compact, can be easily operated by a simple DC drive current, and provide spectrally flat frequency combs with bandwidths in excess of 2 THz, thus lending themselves to coherent dual-comb ranging. In our experiments, we show measurement rates of up to 500 MHz—the highest rate demonstrated with any ranging system so far. We attain reliable measurement results with optical return powers of only – 40 dBm, corresponding to a total loss of 49 dB in the ranging path, which corresponds to the highest loss tolerance demonstrated so far for dual-comb ranging with chip-scale comb sources. Combing QD-MLLDs with advanced silicon photonic receivers offers an attractive route towards robust and technically simple chip-scale LiDAR systems

    Diodes lasers DFB à couplage par l'indice émettant entre 2 µm et 3,3 µm sur substrat GaSb

    Get PDF
    Development of a reliable, real-time, selective, sensitive and suitable technique for atmospheric trace gas spectroscopy is a critical challenge in science and engineering, for sanitary, ecological and industrial issues. Tunable single-frequency lasers in the 2µm to 3.3µm wavelength range, working in continuous regime at room temperature, can be used in absorption spectroscopy to identify and quantify several atmospheric gases. We report here on the design, the technological development and the performances of 1st and 2nd order index-coupled distributed-feedback (DFB) antimonide-lasers diodes in the 2µm to 3.3µm wavelength range. The first part of this document establishes the context of the thesis, introduces the DFB theory and our modelisation. The second part presents the technological fabrication of the two different components: the side wall corrugated DFB lasers and the buried DFB lasers. The third part shows the performances of the components and the first tests on gas measurement.This work has led to the development of two different kinds of single-frequency laser diodes with high optical power and spectral purity. The fabricated prototypes will soon be used on gas spectroscopy set-up.Le développement d'un procédé de détection de gaz atmosphériques à l'état de traces en temps réel, fiable, robuste, sélectif, sensible et portable, est impératif pour répondre à des enjeux sanitaires, écologiques et industriels. La spectroscopie par diodes laser accordables est une des voies envisagées pour pourvoir à ce besoin. Elle nécessite le développement de diodes lasers mono-fréquences émettant en régime continu à température ambiante entre 2 µm et 3.3 µm. Nous reportons ici les modélisations et développements technologiques nécessaires à la fabrication de lasers à contre-réaction répartie – à couplage par l'indice, réseau du 1er et 2nd ordre, sur substrat antimoniure – ainsi que les résultats obtenus. Dans la première partie de ce document, après avoir dressé le contexte de l'étude, nous introduirons la théorie des lasers à contre-réaction répartie et présenterons les modélisations qui ont permis de décrire nos structures. La seconde partie est dédiée aux développements des procédés technologiques qui ont permis de mettre en place deux filières de fabrication de composants – à savoir des lasers DFB à ailettes et lasers DFB à réseau enterré. La troisième partie expose les performances des composants fabriqués et présente les premières mesures d'analyse de gaz effectuées. Ces travaux ont conduit au développement de deux nouvelles filières de fabrication de composants : des diodes lasers mono-fréquences présentant une puissance élevée et une forte sélectivité modale. Les prototypes fabriqués seront utilisés sur des systèmes de spectroscopie

    Index coupled distributed feedback GaSb based laser diode in the 2µm to 3.3µm range

    No full text
    Le développement d'un procédé de détection de gaz atmosphériques à l'état de traces en temps réel, fiable, robuste, sélectif, sensible et portable, est impératif pour répondre à des enjeux sanitaires, écologiques et industriels. La spectroscopie par diodes laser accordables est une des voies envisagées pour pourvoir à ce besoin. Elle nécessite le développement de diodes lasers mono-fréquences émettant en régime continu à température ambiante entre 2 µm et 3.3 µm. Nous reportons ici les modélisations et développements technologiques nécessaires à la fabrication de lasers à contre-réaction répartie – à couplage par l'indice, réseau du 1er et 2nd ordre, sur substrat antimoniure – ainsi que les résultats obtenus. Dans la première partie de ce document, après avoir dressé le contexte de l'étude, nous introduirons la théorie des lasers à contre-réaction répartie et présenterons les modélisations qui ont permis de décrire nos structures. La seconde partie est dédiée aux développements des procédés technologiques qui ont permis de mettre en place deux filières de fabrication de composants – à savoir des lasers DFB à ailettes et lasers DFB à réseau enterré. La troisième partie expose les performances des composants fabriqués et présente les premières mesures d'analyse de gaz effectuées. Ces travaux ont conduit au développement de deux nouvelles filières de fabrication de composants : des diodes lasers mono-fréquences présentant une puissance élevée et une forte sélectivité modale. Les prototypes fabriqués seront utilisés sur des systèmes de spectroscopie.Development of a reliable, real-time, selective, sensitive and suitable technique for atmospheric trace gas spectroscopy is a critical challenge in science and engineering, for sanitary, ecological and industrial issues. Tunable single-frequency lasers in the 2µm to 3.3µm wavelength range, working in continuous regime at room temperature, can be used in absorption spectroscopy to identify and quantify several atmospheric gases. We report here on the design, the technological development and the performances of 1st and 2nd order index-coupled distributed-feedback (DFB) antimonide-lasers diodes in the 2µm to 3.3µm wavelength range. The first part of this document establishes the context of the thesis, introduces the DFB theory and our modelisation. The second part presents the technological fabrication of the two different components: the side wall corrugated DFB lasers and the buried DFB lasers. The third part shows the performances of the components and the first tests on gas measurement.This work has led to the development of two different kinds of single-frequency laser diodes with high optical power and spectral purity. The fabricated prototypes will soon be used on gas spectroscopy set-up

    Design and investigation of a low-threshold organic laser diode using mixed-order DFB cavities

    No full text
    In this work, we experimentally and theoretically investigate the optical and electrical optimization of an OLED associated to a mixed-order DFB cavity. We, firstly focus on the design and the fabrication of a mixed-order DFB cavity with a high quality factor. We particularly study the impact of the deposition of the organic layers on the topology and the quality factor of the cavity

    Electrically injected parity-time symmetric distributed feedback laser diodes (DFB) for telecom applications

    No full text
    The new paradigm of parity-time symmetry in quantum mechanics has readily been applied in the field of optics with numerous demonstrations of exotic properties in photonic systems. In this work, we report on the implementation of single frequency electrically injected distributed feedback (DFB) laser diodes based on parity-time symmetric dual gratings in a standard ridge waveguide configuration. We demonstrate enhanced modal discrimination for these devices as compared with index or gain coupled ones, fabricated in the same technology run. Optical transmission probing experiments further show asymmetric amplification in the light propagation confirming the parity-time symmetry signature of unidirectional light behavior. Another asset of these complex coupled devices is further highlighted in terms of robustness to optical feedback

    High-Power 810-nm Passively Mode-Locked Laser Diode With Al-Free Active Region

    No full text
    International audienc

    Multiscale Fabrication Process Optimization of DFB Cavities for Organic Laser Diodes

    No full text
    In the context of the quest for the Organic Laser Diode, we present the multiscale fabrication process optimization of mixed-order distributed-feedback micro-cavities integrated in nanosecond-short electrical pulse-ready organic light-emitting diodes (OLEDs). We combine ultra-short pulsed electrical excitation and laser micro-cavities. This requires the integration of a highly resolved DFB micro-cavity with an OLED stack and with microwave electrodes. In a second challenge, we tune the cavity resonance precisely to the electroluminescence peak of the organic laser gain medium. This requires precise micro-cavity fabrication performed using e-beam lithography to pattern gratings with a precision in the nanometer scale. Optimal DFB micro-cavities are obtained with 300 nm thick hydrogen silsesquioxane negative-tone e-beam resist on 50 nm thin indium tin oxide anode exposed with a charge quantity per area (i.e., dose) of 620 µC/cm2, developed over 40 min in tetramethylammonium hydroxide diluted in water. We show that the integration of the DFB micro-cavity does not hinder the pulsed electrical operability of the device, which exhibits a peak current density as high as 14 kA/cm2
    corecore