23 research outputs found

    ALICE: An Automatic Design Flow for eFPGA Redaction

    Get PDF
    Fabricating an integrated circuit is becoming unaffordable for many semiconductor design houses. Outsourcing the fabrication to a third-party foundry requires methods to protect the intellectual property of the hardware designs. Designers can rely on embedded reconfigurable devices to completely hide the real functionality of selected design portions unless the configuration string (bitstream) is provided. However, selecting such portions and creating the corresponding reconfigurable fabrics are still open problems. We propose ALICE, a design flow that addresses the EDA challenges of this problem. ALICE partitions the RTL modules between one or more reconfigurable fabrics and the rest of the circuit, automating the generation of the corresponding redacted design

    Spintronic Majority Gates

    Get PDF
    In this paper we present an overview of two types of majority gate devices based on spintronic phenomena. We compare the spin torque majority gate and the spin wave majority gate and describe work on these devices. We discuss operating conditions for the two device concepts, circuit implication and how these reflect on materials choices for device implementation

    Advances, Challenges and Opportunities in 3D CMOS Sequential Integration

    Get PDF
    3D sequential integration enables the full use of the third dimension thanks to its high alignment performance. In this paper, we address the major challenges of 3D sequential integration: in particular, the control of molecular bonding allows us to obtain pristine quality top active layer. With the help of Solid Phase Epitaxy, we can match the performance of top FET, processed at low temperature (600°C), with the bottom FET devices. Finally, the development of a stable salicide enables to retain bottom performance after top FET processing. Overcoming these major technological issues offers a wide range of applications

    Exploring eFPGA-based Redaction for IP Protection

    Get PDF
    Recently, eFPGA-based redaction has been proposed as a promising solution for hiding parts of a digital design from untrusted entities, where legitimate end-users can restore functionality by loading the withheld bitstream after fabrication. However, when deciding which parts of a design to redact, there are a number of practical issues that designers need to consider, including area and timing overheads, as well as security factors. Adapting an open-source FPGA fabric generation flow, we perform a case study to explore the trade-offs when redacting different modules of open-source intellectual property blocks (IPs) and explore how different parts of an eFPGA contribute to the security. We provide new insights into the feasibility and challenges of using eFPGA-based redaction as a security solution

    On the design of a fault tolerant ripple-carry adder with controllable-polarity transistors

    Get PDF
    This paper first explores the effects of faults on circuits implemented with controllable-polarity transistors. We propose a new fault model that suits the characteristics of these devices, and report the results of a SPICE-based analysis of the effects of faults on the behavior of some basic gates implemented with them. Hence, we show that the considered devices are able to intrinsically tolerate a rather high number of faults. We finally exploit this property to build a robust and scalable adder whose area, performance and leakage power characteristics are improved by 15%, 18% and 12%, respectively, when compared to an equivalent FinFET solution at 22-nm technology node
    corecore