22 research outputs found

    HIF-P4H-2 inhibition enhances intestinal fructose metabolism and induces thermogenesis protecting against NAFLD

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) parallels the global obesity epidemic with unmet therapeutic needs. We investigated whether inhibition of hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2), a key cellular oxygen sensor whose inhibition stabilizes HIF, would protect from NAFLD by subjecting HIF-P4H-2-deficient (Hif-p4h-2(gt/gt)) mice to a high-fat, high-fructose (HFHF) or high-fat, methionine-choline-deficient (HF-MCD) diet. On both diets, the Hif-p4h-2(gt/gt) mice gained less weight and had less white adipose tissue (WAT) and its inflammation, lower serum cholesterol levels, and lighter livers with less steatosis and lower serum ALT levels than the wild type (WT). The intake of fructose in majority of the Hif-p4h-2(gt/gt) tissues, including the liver, was 15-35% less than in the WT. We found upregulation of the key fructose transporter and metabolizing enzyme mRNAs, Slc2a2, Khka, and Khkc, and higher ketohexokinase activity in the Hif-p4h-2(gt/gt) small intestine relative to the WT, suggesting enhanced metabolism of fructose in the former. On the HF-MCD diet, the Hif-p4h-2(gt/gt) mice showed more browning of the WAT and increased thermogenesis. A pharmacological pan-HIF-P4H inhibitor protected WT mice on both diets against obesity, metabolic dysfunction, and liver damage. These data suggest that HIF-P4H-2 inhibition could be studied as a novel, comprehensive treatment strategy for NAFLD. Key messages center dot HIF-P4H-2 inhibition enhances intestinal fructose metabolism protecting the liver. center dot HIF-P4H-2 inhibition downregulates hepatic lipogenesis. center dot Induced browning of WAT and increased thermogenesis can also mediate protection. center dot HIF-P4H-2 inhibition offers a novel, comprehensive treatment strategy for NAFLD.Peer reviewe

    HIF-1α-stabilizing agent FG-4497 rescues human CD34+ cell mobilization in response to G-CSF in immunodeficient mice

    Get PDF
    Granulocyte colony-stimulating factor (G-CSF) is used routinely in the clinical setting to mobilize hematopoietic stem progenitor cells (HSPCs) into the patient's blood for collection and subsequent transplantation. However, a significant proportion of patients who have previously received chemotherapy or radiotherapy and require autologous HSPC transplantation cannot mobilize the minimal threshold of mobilized HSPCs to achieve rapid and successful hematopoietic reconstitution. Although several alternatives to the G-CSF regime have been tested, few are used in the clinical setting. We have shown previously in mice that administration of prolyl 4-hydroxylase domain enzyme (PHD) inhibitors, which stabilize hypoxiainducible factor (111F)-1 alpha, synergize with G-CSF in vivo to enhance mouse HSPC mobilization into blood, leading to enhanced engraftment via an HSPC-intrinsic mechanism. To evaluate whether PHD inhibitors could be used to enhance mobilization of human HSPCs, we humanized nonobese, diabetic severe combined immune-deficient Il2rg(-/-) mice by transplanting them with human umbilical cord blood CD34(+) HSPCs and then treating them with G-CSF with and without co-administration of the PHD inhibitor FG-4497. We observed that combination treatment with G-CSF and FG-4497 resulted in significant mobilization of human lineage-negative (Lin(-)) CD34(+) HSPCs and more primitive human Lin(-) CD34(+)CD38(-) HSPCs into blood and spleen, whereas mice treated with G-CSF alone did not mobilize human HSPCs significantly. These results suggest that the PHD inhibitor FG-4497 also increases human HSPC mobilization in a xenograft mouse model, suggesting the possibility of testing PHD inhibitors to boost HSPC mobilization in response to G-CSF in humans. Copyright (C) 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc

    Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations

    Get PDF
    Ischemic heart disease (IHD) is the leading cause of death worldwide. Novel cardioprotective strategies are therefore required to improve clinical outcomes in patients with IHD. Although a large number of novel cardioprotective strategies have been discovered in the research laboratory, their translation to the clinical setting has been largely disappointing. The reason for this failure can be attributed to a number of factors including the inadequacy of the animal ischemia–reperfusion injury models used in the preclinical cardioprotection studies and the inappropriate design and execution of the clinical cardioprotection studies. This important issue was the main topic of discussion of the UCL-Hatter Cardiovascular Institute 6th International Cardioprotection Workshop, the outcome of which has been published in this article as the “Hatter Workshop Recommendations”. These have been proposed to provide guidance on the design and execution of both preclinical and clinical cardioprotection studies in order to facilitate the translation of future novel cardioprotective strategies for patient benefit

    HIF prolyl hydroxylase inhibitor FG-4497 enhances mouse hematopoietic stem cell mobilization via VEGFR2/KDR

    Get PDF
    In normoxia, hypoxia-inducible transcription factors (HIFs) are rapidly degraded within the cytoplasm as a consequence of their prolyl hydroxylation by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes. We have previously shown that hematopoietic stem and progenitor cells (HSPCs) require HIF-1 for effective mobilization in response to granulocyte colony-stimulating factor (G-CSF) and CXCR4 antagonist AMD3100/plerixafor. Conversely, HIF PHD inhibitors that stabilize HIF-1 protein in vivo enhance HSPC mobilization in response to G-CSF or AMD3100 in a cell-intrinsic manner. We now show that extrinsic mechanisms involving vascular endothelial growth factor receptor-2 (VEGFR2), via bone marrow (BM) endothelial cells, are also at play. PTK787/vatalanib, a tyrosine kinase inhibitor selective for VEGFR1 and VEGFR2, and neutralizing anti-VEGFR2 monoclonal antibody DC101 blocked enhancement of HSPC mobilization by FG-4497. VEGFR2 was absent on mesenchymal and hematopoietic cells and was detected only in Sca1 endothelial cells in the BM. We propose that HIF PHD inhibitor FG-4497 enhances HSPC mobilization by stabilizing HIF-1α in HSPCs as previously demonstrated, as well as by activating VEGFR2 signaling in BM endothelial cells, which facilitates HSPC egress from the BM into the circulation

    Inhibition of HIF prolyl-4-hydroxylases by FG-4497 reduces brain tissue injury and edema formation during ischemic stroke.

    Get PDF
    Ischemic stroke results in disruption of the blood-brain barrier (BBB), edema formation and neuronal cell loss. Some neuroprotective factors such as vascular endothelial growth factor (VEGF) favor edema formation, while others such as erythropoietin (Epo) can mitigate it. Both factors are controlled by hypoxia inducible transcription factors (HIF) and the activity of prolyl hydroxylase domain proteins (PHD). We hypothesize that activation of the adaptive hypoxic response by inhibition of PHD results in neuroprotection and prevention of vascular leakage. Mice, subjected to cerebral ischemia, were pre- or post-treated with the novel PHD inhibitor FG-4497. Inhibition of PHD activity resulted in HIF-1α stabilization, increased expression of VEGF and Epo, improved outcome from ischemic stroke and reduced edema formation by maintaining BBB integrity. Additional in vitro studies using brain endothelial cells and primary astrocytes confirmed that FG-4497 induces the HIF signaling pathway, leading to increased VEGF and Epo expression. In an in vitro ischemia model, using combined oxygen and glucose deprivation, FG-4497 promoted the survival of neurons. Furthermore, FG-4497 prevented the ischemia-induced rearrangement and gap formation of the tight junction proteins zonula occludens 1 and occludin, both in cultured endothelial cells and in infarcted brain tissue in vivo. These results indicate that FG-4497 has the potential to prevent cerebral ischemic damage by neuroprotection and prevention of vascular leakage

    Acute hypoxia modifies regulation of neuroglobin in the neonatal mouse brain

    Full text link
    Among endogenous adaptive systems to hypoxia, neuroglobin, a recently discovered heme protein, was suggested as a novel oxygen-dependent neuroprotectant. We aimed to characterize i) maturational age-related regulation of neuroglobin in the developing mouse brain under normoxic and hypoxic conditions, and ii) the role of hypoxia-inducible transcription factors (HIFs) as possible mediators of O(2)-dependent regulation of neuroglobin in vitro and in vivo. During early stages of postnatal brain maturation (P0-P14) neuroglobin mRNA levels significantly increased in developing mouse forebrains. By immunohistochemical analysis we confirmed expression of neuroglobin protein in the cytoplasm of developing neurons but not glial cells under normoxic conditions. Exposure of the immature brains (P0, P7) to acute (8% O(2), 6h) and chronic systemic hypoxia (10% O(2), 7days) led to differential activation of neuroglobin varying with maturational stage (P0, P7) and severity of hypoxia. This observation may indicate that neuroglobin is involved in adaptive responses of immature neurons to acute hypoxia during an early stage of mouse brain maturation (P0). In response to activation of the HIF system by prolyl-4-hydroxylase inhibitor (FG-4497), neuroglobin mRNA expression was significantly up-regulated in primary mouse cortical neurons (DIV6) exposed to normoxia and hypoxia (1% O(2)) compared to non-treated controls. In conclusion, present results strongly indicate that cerebral regulation of neuroglobin is related to maturational stage and that hypoxia-induced neuroglobin up-regulation is modified by the HIF system

    FG-4497 pre-treatment decreases infarct size and the formation of vasogenic edema upon transient cerebral ischemia.

    No full text
    <p>100/kg FG-4497 or an equal volume of 0.9% NaCl was applied intraperitoneally to adult C57BL/6 mice. After 6 hours mice underwent 60 min of MCAO followed by 24 hours reperfusion. Subsequently, brains were removed and from each brain, 24 coronal cryosections (10 µm thick each; 0.4 mm apart) were prepared and submitted to cresyl violet staining for quantification of the infarct and edema size. Significant differences determined by unpaired two-tailed t-test are indicated with *(<i>p</i><0.05). <i>N</i> = 8–9 (per group).</p

    FG-4497 post-treatment reduces infarct size upon permanent cerebral ischemia.

    No full text
    <p>Adult C57BL/6 mice underwent permanent MCAO followed by intraperitoneal application of 100 mg/kg FG-4497 or an equal volume of 0.9% NaCl 1 hour later. 7 days after induction of permanent cerebral ischemia, brains were removed and from each brain, 24 coronal cryosections (10 µm thick each; 0.4 mm apart) were prepared and submitted to cresyl violet staining for quantification of the infarct size. Significant differences determined by unpaired two-tailed t-test are indicated with ***(<i>p</i><0.001). <i>N</i> = 6 (per group).</p

    FG-4497 induces HIF target gene expression in endothelial cells and astrocytes.

    No full text
    <p>Mouse cerebrovascular bEnd.3 cells (<b>A</b>) and primary murine astrocytes (<b>B</b>) were treated with either 1 mM DMOG or FG-4497 (5, 20 and 50 µM) or were exposed to hypoxia (1% O<sub>2</sub>) for 12 hours. Subsequently, RNA was isolated and gene expression was analyzed by real-time PCR. Values are normalized to <i>Rps12</i> and expressed as fold change to CTRL. Significant differences determined by one-way ANOVA combined with Bonferroni post-test are indicated with *(<i>p</i><0.05), **(<i>p</i><0.01) or ***(<i>p</i><0.001). <i>N</i> = 3.</p

    FG-4497 prevents subcellular delocalization of ZO-1 in OGD-stressed endothelial cells.

    No full text
    <p>Mouse cerebrovascular bEnd.3 cells were exposed to OGD in the absence or presence of 20 µM FG-4497 for 6 and 24 hours or were treated with 20 µM FG-4497 for 6 hours under basal conditions. Immunofluorescent staining was used to visualize the subcellular localization of ZO-1. Cell membrane regions not immunoreactive for ZO-1 (gaps; denoted by white arrowheads) were quantified in five different randomly chosen microscopic fields for each condition per experiment. Significant differences determined by one-way ANOVA combined with Bonferroni post-test are indicated with *(<i>p</i><0.05) or ***(<i>p</i><0.001). Scale bar = 20 µm. <i>N</i> = 4.</p
    corecore