37 research outputs found

    PCR Based Microbial Monitor for Analysis of Recycled Water Aboard the ISSA: Issues and Prospects

    Get PDF
    The monitoring of spacecraft life support systems for the presence of health threatening microorganisms is paramount for crew well being and successful completion of missions. Development of technology to monitor spacecraft recycled water based on detection and identification of the genetic material of contaminating microorganisms and viruses would be a substantial improvement over current NASA plans to monitor recycled water samples that call for the use of conventional microbiology techniques which are slow, insensitive, and labor intensive. The union of the molecular biology techniques of DNA probe hybridization and polymerase chain reaction (PCR) offers a powerful method for the detection, identification, and quantification of microorganisms and viruses. This technology is theoretically capable of assaying samples in as little as two hours with specificity and sensitivity unmatched by any other method. A major advance in probe-hybridization/PCR has come about in a technology called TaqMan(TM), which was invented by Perkin Elmer. Instrumentation using TaqMan concepts is evolving towards devices that could meet NASA's needs of size, low power use, and simplicity of operation. The chemistry and molecular biology needed to utilize these probe-hybridization/PCR instruments must evolve in parallel with the hardware. The following issues of chemistry and biology must be addressed in developing a monitor: Early in the development of a PCR-based microbial monitor it will be necessary to decide how many and which organisms does the system need the capacity to detect. We propose a set of 17 different tests that would detect groups of bacteria and fungus, as well as specific eukaryotic parasites and viruses; In order to use the great sensitivity of PCR it will be necessary to concentrate water samples using filtration. If a lower limit of detection of 1 microorganism per 100 ml is required then the microbes in a 100 ml sample must be concentrated into a volume that can be added to a PCR assay; There are not likely to be contaminants in ISSA recycled water that would inhibit PCR resulting in false-negative results; The TaqMan PCR product detection system is the most promising method for developing a rapid, highly automated gene-based microbial monitoring system. The method is inherently quantitative. NASA and other government agencies have invested in other technologies that, although potentially could lead to revolutionary advances, are not likely to mature in the next 5 years into working systems; PCR-based methods cannot distinguish between DNA or RNA of a viable microorganism and that of a non-viable organism. This may or may not be an important issue with reclaimed water on the ISSA. The recycling system probably damages the capacity of the genetic material of any bacteria or viruses killed during processing to serve as a template in a PCR desinged to amplify a large segment of DNA (less than 650 base pairs). If necessary, vital dye staining could be used in addition to PCR, to enumerate the viable cells in a water sample; The quality control methods have been developed to insure that PCR's are working properly, and that reactions are not contaminated with PCR carryover products which could lead to the generation of false-positive results; and The sequences of the small rRNA subunit gene for a large number of microorganisms are known, and they consititue the best database for rational development of the oligonucleotide reagents that give PCR its great specificity. From those gene sequences, sets of oligonucleotide primers for PCR and Taqman detection that could be used in a NASA microbial monitor were constructed using computer based methods. In addition to space utilization, a microbial monitior will have tremendous terrestrial applications. Analysis of patient samples for microbial pathogens, testing industrial effluent for biofouling bacteria, and detection biological warfare agents on the battlefield are but a few of the diverse potential uses for this technology. Once fully developed, gene-based microbial monitors will become the fundamental tool in every lab that tests for microbial contaminants, and serve as a powerful weapon in mankind's war with the germ world

    AI for infectious disease modelling and therapeutics

    Get PDF
    AI for infectious disease modelling and therapeutics is an emerging area that leverages new computational approaches and data in this area. Genomics, proteomics, biomedical literature, social media, and other resources are proving to be critical tools to help understand and solve complicated issues ranging from understanding the process of infection, diagnosis and discovery of the precise molecular details, to developing possible interventions and safety profiling of possible treatments

    Populations of latent Mycobacterium tuberculosis lack a cell wall: Isolation, visualization, and whole-genome characterization

    Get PDF
    AbstractObjective/BackgroundMycobacterium tuberculosis (MTB) causes active tuberculosis (TB) in only a small percentage of infected people. In most cases, the infection is clinically latent, where bacilli can persist in human hosts for years without causing disease. Surprisingly, the biology of such persister cells is largely unknown. This study describes the isolation, identification, and whole-genome sequencing (WGS) of latent TB bacilli after 782days (26months) of latency (the ability of MTB bacilli to lie persistent).MethodsThe in vitro double-stress model of latency (oxygen and nutrition) was designed for MTB culture. After 26months of latency, MTB cells that persisted were isolated and investigated under light and atomic force microscopy. Spoligotyping and WGS were performed to verify the identity of the strain.ResultsWe established a culture medium in which MTB bacilli arrest their growth, reduce their size (0.3–0.1μm), lose their acid fastness (85–90%) and change their shape. Spoligopatterns of latent cells were identical to original H37Rv, with differences observed at spacers two and 14. WGS revealed only a few genetic changes relative to the already published H37Rv reference genome. Among these was a large 2064-bp insertion (RvD6), which was originally detected in both H37Ra and CDC1551, but not H37Rv.ConclusionHere, we show cell-wall free cells of MTB bacilli in their latent state, and the biological adaptation of these cells was more phenotypic in nature than genomic. These cell-wall free cells represent a good model for understanding the nature of TB latency

    Mycoplasma penetrans bacteremia and primary antiphospholipid syndrome.

    Get PDF
    Mycoplasma penetrans, a rare bacterium so far only found in HIV-infected persons, was isolated in the blood and throat of a non-HIV-infected patient with primary antiphospholipid syndrome (whose etiology and pathogenesis are unknown)

    Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) among a Cohort of South African Patients with High HIV Prevalence

    Get PDF
    Multidrug-resistant tuberculosis (MDR-TB) is a major clinical challenge, particularly in patients with human immunodeficiency virus (HIV) co-infection. MDR-TB treatment is increasingly available, but outcomes have not been well characterized. South Africa has provided MDR-TB treatment for a decade, and we evaluated outcomes by HIV status for patients enrolled between 2000 and 2004 prior to anti-retroviral access.We assessed treatment outcomes in a prospective cohort of patients with MDR-TB from eight provincial programs providing second line drugs. World Health Organization definitions were used. Results were stratified by HIV status.Seven hundred fifty seven patients with known HIV status were included in the final analysis, and HIV infection was documented in 287 (38%). Overall, 348 patients (46.0%) were successfully treated, 74 (9.8%) failed therapy, 177 (23.4%) died and 158 (20.9%) defaulted. Patients with HIV were slightly younger and less likely to be male compared to HIV negative patients. Patients with HIV were less likely to have a successful treatment outcome (40.0 vs. 49.6; P<0.05) and more likely to die (35.2 vs. 16.2; P<0.0001). In a competing risk survival analysis, patients with HIV had a higher hazard of death (HR: 2.33, P<0.0001). Low baseline weight (less than 45 kg and less than 60 kg) was also associated with a higher hazard of death (HR: 2.52, P<0.0001; and HR: 1.50, P<0.0001, respectively, compared to weight greater than 60 kg). Weight less than 45 kg had higher risk of failure (HR: 3.58, P<0.01). Any change in treatment regimen was associated with a higher hazard of default (HR: 2.86; 95% CI 1.55-5.29, P<0.001) and a lower hazard of death (HR: 0.63, P<0.05).In this MDR-TB treatment program patients with HIV infection and low weight had higher hazards of death. Overall treatment outcomes were poor. Efforts to improve treatment for MDR-TB are urgently needed
    corecore