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A B S T R A C T

Objective/Background: Mycobacterium tuberculosis (MTB) causes active tuberculosis (TB) in

only a small percentage of infected people. In most cases, the infection is clinically latent,

where bacilli can persist in human hosts for years without causing disease. Surprisingly,

the biology of such persister cells is largely unknown. This study describes the isolation,

identification, and whole-genome sequencing (WGS) of latent TB bacilli after 782 days

(26 months) of latency (the ability of MTB bacilli to lie persistent).

Methods: The in vitro double-stress model of latency (oxygen and nutrition) was designed

for MTB culture. After 26 months of latency, MTB cells that persisted were isolated and

investigated under light and atomic force microscopy. Spoligotyping and WGS were per-

formed to verify the identity of the strain.

Results: We established a culture medium in which MTB bacilli arrest their growth, reduce

their size (0.3–0.1 lm), lose their acid fastness (85–90%) and change their shape. Spoligopat-

terns of latent cells were identical to original H37Rv, with differences observed at spacers

two and 14. WGS revealed only a few genetic changes relative to the already published

H37Rv reference genome. Among these was a large 2064-bp insertion (RvD6), which was

originally detected in both H37Ra and CDC1551, but not H37Rv.
(NRITLD),
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Conclusion: Here, we show cell-wall free cells of MTB bacilli in their latent state, and the

biological adaptation of these cells was more phenotypic in nature than genomic. These

cell-wall free cells represent a good model for understanding the nature of TB latency.

� 2015 Asian-African Society for Mycobacteriology. Production and hosting by Elsevier Ltd.

All rights reserved.
Introduction

Eradication of tuberculosis (TB) has been hampered partly by

the ability of Mycobacterium tuberculosis (MTB) to remain dor-

mant in the human body for years without causing disease,

a state referred to as latent tuberculosis [1,2]. The shift of

MTB into a persistent state can occur after initial infection

(pre-antibiotic persistence) or after completion of TB treat-

ment in patients who developed late reactivation (post-

antibiotic persistence) [2–4]. Today, more than one-third of

the world population (2.2 billion individuals) is estimated to

harbor latent TB infection, of which 2–23% will develop active

TB during their lifetime [5]. The reactivation process can be

altered with HIV infection, malnutrition, drug use, cancer,

diabetes, chronic renal insufficiency, and immunosuppressive

drug therapy [3,5]. Therefore, more effort must be devoted to

better control their progression and understand the latent

state. In the last two decades, significant progress was made

toward development and characterization of various aspects

of latent TB cells [6–11]. However, our knowledge of these cells

remains very limited, mainly due to their low numbers and

our inability to precisely localize them in living host tissues.

The existence of latent TB was originally recognized as non-

culturable MTB living within closed pulmonary lesions

[6,12]. The Cornell model of latency was the first experimental

in vivo model providing evidence for latent TB bacilli [3,13].

Additionally, smear-negative autopsy specimens from

asymptomatic humans were shown to induce active disease

in animals, suggesting that MTB capable of causing disease

can persist in a non-acid-fast, latent state [3,14,15]. Wayne

[7] and Wayne and Hayes [16] proposed an in vitro model of

MTB latency with two nonreplicating persistent (NRP) states:

a microaerophilic (NRP1) and a later anaerobic (NRP2) state

[7,16]. Overall, latency is believed to involve nonreplicating

or very slow growing MTB [3,4,17]. The whole-genome

sequence of laboratory strain MTB H37Rv, and other clinical

MTB isolates has enhanced our understanding of the genetic

diversity among MTB strains, including the regulatory path-

ways that might contribute to stationary and persistent states

[18,19]. Some of these pathways are specifically regulated dur-

ing MTB persistence [3,4,20,21]; however, it is unclear whether

these changes are heritable or special to the genome of MTB

persister cells. Recently, we documented a morphological

alteration of latent TB cells in NRP1 and NRP2 states of latency

[22] that was similar to persister-like TB bacilli (size ranging

from �150 lm to 300 lm) observed in sputum from MDR-

treated TB patients who experienced disease recurrence

[23]. In the present investigation, we maintained H37RV bacilli

under oxygen- and nutrient-deprivation conditions for

782 days (26 months), followed by isolation and investigation

of the cultured bacilli using light and atomic force microscopy
(AFM; Nanoscope version 5.31R1), spoligotyping, and whole-

genome sequencing. To our knowledge, this is the first report

that provides detailed information about phenotypic and

genomic characterization of persister MTB. We expect that

the results of this study will provide fundamental informa-

tion for understanding the biology, pathology, and treatment

of latent tuberculosis.

Materials and methods

Inoculation of MTB

H37RV cells at exponential growth phase [OD600 = 0.05

(5 � 106 cfu/mL] were transferred to screw-cap test tubes

(20 mm � 125 mm) containing low-nutrient Dubos medium

[0.03% Tween and 10% Dubos albumin supplement without

glycerol (Difco Laboratories Ltd., West Molesey, UK)] [8,20].

Magnetic stirrers were added to each tube, and the tubes were

sealed using molten paraffin wax [22]. The culture tubes

(n = 10) were constantly stirred (50–80 rpm) at 37 �C for

26 months. To isolate persister cells, cultures were cen-

trifuged (14,000g for 30 min) to obtain cell pellets or sedi-

ments, which were passed through a 0.25-lm Millipore filter

(EMD Millipore, Billerica, MA, USA). A smear prep for micro-

scopic examination (Ziehl–Neelsen staining) was prepared

for both filtered and unfiltered sediments. Sediments were

also inoculated into both liquid (fresh 7H9-ADC-glycerol

broth) and solid culture media (L.J & 7H10-Agar, blood agar)

to determine whether cells were able to grow following the

extended incubation (from 8 to 12 weeks). The culture tubes

were read twice per week for 12 weeks.

Estimation of oxygen consumption

Oxygen depletion was monitored via decolorization of the

redox indicator methylene blue (1.5 lg/mL) in control tubes.

The blue dye served as a visual indicator of hypoxia by fading

and finally disappearing as oxygen was depleted [24].

AFM

AFM images were recorded in contact mode using an optical-

lever microscope equipped with a liquid cell (Nanoscope IV

Multimode AFM; Veeco Metrology Group LLC, Santa Barbara,

CA, USA). To image MTB on silicon plates, the surface was

charged with polyclonal rabbit anti-mycobacterium antibody

(B0124; Dako, Carpinteria, CA, USA) before adding 0.1 lL of

diluted (1:10) MTB samples to the plate [25]. Both height and

deflection images were recorded, using oxide-sharpened

microfabricated Si3N4 cantilevers (Microlevers; Veeco Metrol-

ogy LLC) with a spring constant of 0.01/nm [22,25]. Overall,
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15–20 steel sample packs were used to observe each sample.

The expected and observed frequencies of cell shape and cell

size in different tube cultures were compared and analyzed

by Fisher Exact test. The data presented here are the average

of all observations.

DNA extraction

Genomic DNA from filtered sediment was extracted using

QIAamp DNA Mini Kit (Cat No: 51304; Qiagen, Hilden,

Germany).

Genotyping

Spoligotyping was performed according to the protocol

described by Kamerbeek and colleagues [26].

Genome sequencing and analysis

Illumina libraries were prepared and sequenced using the

Illumina HiSeq2000 platform as previously described [27–29].

Sequence reads were mapped onto MTB H37RV (GenBank

accession number: CP003248.2) using BWA version 0.5.9.9

[27], and variants were identified using Pilon version 1.12

[28]. Sequence reads were also assembled using ALL-

PATHS-LG with Pilon correction as described for the

Pilon-integrated tool [28]. Sequence reads and annotated

assemblies were deposited into GenBank under BioSample

ID SAMN02628494. Each Pilon-predicted variant was validated

bymanual inspection of read alignments to the H37RV genome

in IGV [27] and further assessed using the assembled genome.

To detect larger events, such as insertions or rearrangements,

the assembly was aligned to the H37RV assembly using NUC-

mer in the MUMmer package [29]. Each assembly scaffold that

did not perfectly match H37Rv was manually inspected and

differences were reported. Only variable positions that were

verified are described in the results. Finally, PROTEAN [30]

was used to determine the effect of single nucleotide

polymorphisms (SNPs) on protein function.

Results

Phenotypic changes

As previously reported [22], oxygen depletion was based on

gradual hypoxia deprivation that was initially proposed by

Wayne and Hayes [7,16]. However, in our model, MTB cells

were starved for nearly ninefold longer than in previous

experiments (782 vs. 90 days). The visual indicator of hypoxia,

methylene blue, reported that the control culture tubes were

hypoxic after 12–14 days of MTB inoculation, suggesting that

during weeks 3–104 of incubation, the cells were starved of

oxygen. At the end of 26 months (104 weeks), we prepared

smears from the unfiltered sediments of all culture tubes

(10 slides/per culture tube) and, using light microscopy,

observed low numbers of acid-fast bacilli (AFB). We could

not detect AFB on smears of the filtered sediments (suggest-

ing that these cells could not pass through the 0.25-lm filter).

Under AFM, the size and morphological appearance of cells
differed between unfiltered and filtered sediments. A mixed

population of rod-shaped (10–15%) or round (85–90%) cells

with an average size of 1–0.5 lm were seen in unfiltered sed-

iments from culture tubes (Fig. 1), whereas the filtered sedi-

ments consisted of uniformly oval or round-shaped cells

with an average size of 0.1–0.3 lm (Figs. 2 and 3). When we

subcultured cells from either filtered or unfiltered sediments,

we did not observe growth in any culture media.

Spoligotypes

The spoligotypes of the starting culture, H37Rv (ATCC25618),

exhibited a pattern similar to that of the reference sequence

(octal representation: 777777477760771) consisting of 43 spac-

ers in the direct-repeat region [20]. The octal reading for the

filtered sediments was 577757477760771, indicating that it

was missing two spacers, i.e., 2 and 14 spacers as compared

with the starting cultures.

Whole-genome analysis

To identify differences between the NRITLD60 and H37Rv

reference genomes, we used complimentary approaches that

utilized the alignment of raw sequence reads from NRITLD60

and H37Rv, and comparison of NRITLD60 and H37Rv whole-

genome assemblies (Fig. 4). The NRITLD60 assembly consisted

of 4,444,114 bases, had a G+C content of 65.57%, and was pre-

dicted to have 4057 genes (Table 1). Alignment of the NRITLD60

sequence to the H37Rv reference genome (accession number:

CP003248.2) revealed that 99.98% of theH37Rv genomewas rep-

resented in this strain, i.e., only the equivalent of �880 bases

were not represented in the NRITLD60 sequence, which is

within the variability range observed between H37Rv strains

globally [31]. In total, we identified eight variants that distin-

guished NRITLD60 from H37Rv, including five SNPs, one large

deletion, one three-base deletion, and one large insertion.

We also detected seven additional variants that were less easy

to verify, due to their beingwithin high G+C-content regions of

the genome, but may further distinguish these two strains,

including three SNPs, two large insertions, one large deletion,

and one large substitution. Of the eight total SNPs, four were

nonsynonymous (RVBD_0516c; RVBD_1447c, RVBD_3080c,

and RVBD_3479c), two were synonymous (RVBD_0633c and

RVBD_3347c), and two were found within intergenic regions

(RVBD_0049 and RVBD_0050). Using PROVEAN [30], we deter-

mined that only the nonsynonymous SNP in zwf2 (RV1477c)

was predicted to negatively impact protein function, while

the three other SNPs were predicted to have a neutral effect.

Deletions were observed within RV1755, RV452, and Rv2629

(Table 2). Deletions within RV1755 and RV452 were 617- and

26-bp in size, respectively, suggesting that these deletions

alter protein function through frame shifts, likely inactivating

the encoded protein. The other deletion observed in RV2629

was small (three bases) and did not cause a frame shift in

the encoded gene, indicating its likelyminimal impact on pro-

tein function. We also detected one large 2064-bp insertion in

NRITLD60 at position 2,634,143 of the H37Rv genome. This

insertion is designated as RvD6 and is located at the start

codon of MRA_2373 (Rv2352c) [32].



Fig. 1 – Presence of rod and round shape cells in unfiltered sediments of MTB culture tubes after 782 days of oxygen and

nutrient deprivation.

Fig. 3 – The average size of ‘‘cell wall free” cells of latent MTB

bacilli was ranging from 0.1 to 0.3 lm.

Fig. 2 – Most of cells from filtered sediments of MTB cultures

appeared to be round or oval shape.
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Discussion

The physiology, morphology, and genetic characterization of

latent MTB are incompletely explored. During TB latency,

MTB are restricted to the characteristic TB lesions, where they

enter into a quiescent state and survive for extended periods

of time. Robertson [33] and Feldman and Baggenstoss [15]

were among the first to show that passage of infected tissues

from asymptomatic patients to animals induced TB infection
[15,33], despite the lack of AFB in these tissues. This observa-

tion prompted a debate concerning the physiological and

morphological characteristics of latent MTB [3–10]. Some pro-

posed that bacilli entered into an altered developmental state

in which acid fastness was lost, while others suggested that

acid fastness was retained and that the number of bacilli

was too low for microscopic detection [34,35]. Here, we used

a double-deprivation model for latency and detected a hetero-

geneous population of cells after a 26-month incubation



Fig. 4 – Reads from two NRITLD60 libraries (‘‘NRITLD60 frags” and ‘‘NRITLD60 jumps”) aligned to a �2 kb region of H37Rv (base

position 1,986,400 to 1,988,400) are shown in IGV [47]. Beginning at roughly 1,987,100 and until base position 1,987,711, there

is a dropout in aligned coverage in both the fragment and jump reads thus illustrating the 616 base deletion reported by Pilon

(1,987,095–1,987,711).
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consisting of few acid-fast and many non-acid-fast bacilli

(Figs. 1–3). Therefore, the observed AFB were most likely dead

bacilli, as subculturing of these cells resulted in no growth in

liquid or solid culture media. Using high-resolution AFM, we

also observed that the filtered MTB culture media was densely

populated with non-acid-fast bacilli. Cell-wall deficient forms

of MTB have been proposed for decades [34–36], but these cell

types have never been visualized or described [3,32–34]. Here,

we were able to isolate and visualize these cells by filtering

cultures and binding filtered cells to a silicon surface coated

with polyclonal rabbit anti-MTB. As shown in Figs. 2–4, these

cells were round or oval in shape with an average size of 150–

300 lm. Generally, microorganisms begin to adapt by chang-

ing their shape and reducing their size [37,38]. In this regard,
Table 1 – Whole-genome assembly of NRITLD60.

Name G57704 all paths 100f50j 49443

Assembler All paths
Contigs 73
Max contig 305,125
Mean contig 60,831
Contig N50 109,043
Contig N90 48,018
Total contig length 4,440,670
Assembly GC 65,577
Scaffolds 68
Max scaffold 305,125
Mean scaffold 65,355
Scaffold N50 136,972
Scaffold N90 54,577
Total scaffold length 4,444,114
Captured gaps 5
Max gap 2119
Mean gap 687
Gap N50 2119
Total gap length 3436
mycobacteria, similar to other bacteria, depend upon the laws

of diffusion to bring compounds to their surface to enable

their mixing with macromolecules in the cytoplasm [37–39].

Therefore, to import nutrients in harsh environments, MTB

increases their surface area without increasing the surface-

to-volume ratio [37,39], which can occur when mycobac-

terium changes from a rod to a round shape [37]. Overall,

the theory of morphological alteration in MTB species has

been discussed by many investigators, but it has not been

definitively proven [34,35,40]. For example, Mitchison et al.

[41] used the Cornell model of latency to show that

homogenate-tissue biopsies from sterile mice were positive

for MTB DNA [41], though MTB positivity based on poly-

merase chain reaction has been argued to result from the

presence of dead microorganisms [42]. In our study, the iso-

lated non-acid- fast bacilli were identified as MTB by spoliog-

typing and whole-genome sequencing. Spoligopatterns were

identical to standard H37Rv, but spacers 2 and 14, as well as

spacers 20 and 21 and 33 through 36, were missing. The gen-

ome was also very similar to H37Rv, with only 15 differences

detected. Among the observed variations, one nonsynony-

mous SNP in RVBD147c was predicted to negatively impact

encoded protein function. Normally, the Zwf gene encodes

glucose-6-phosphate dehydrogenase (G6PDH), an enzyme

that catalyzes NAD+ or NADP+-dependent conversion of

glucose-6-phosphate to 6-phosphogluconate [43]. The activity

of G6PDH and zwf is maximal in early logarithmic phase and

dramatically reduced when bacteria approach stationary

phase [44]. The detected SNP at codon 248 (aAc to aTc) of

zwf2 resulted in an asparagine-to-isoleucine change in the

zwf2-encoded protein, which might play an important role

in shifting zwf transcription during latency [44]. We also

found one large insertion at position 2,634,143 in H37Rv using

an assembly-based method. This insertion, which is desig-

nated RvD6, consists of 2064 bp and is present in both H37Ra

and CDC1551, but is deleted from H37Rv [32]. This fragment
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contains two genes (MRA_2374 and MRA_2375) encoding an

Esat-6-like protein, and a gene encoding a PPE-family protein

(MRA_2376) located at the start codon of MRA_2373 (Rv2352c)

[32].

The presence of this insertion is interesting and needs fur-

ther investigation. In this study, we used the Wayne model of

latency, which resulted in the gradual self-generated oxygen

depletion of MTB cultures grown in sealed tubes [7,16]. Upon

the slow shift of aerobic-growing MTB to anaerobic conditions

in the presence of low or zero nutrients, the cultures were

able to adapt and survive anaerobiosis by shifting to a state

of NRP [3,7,16]. This anaerobic condition is similar to that of

hypoxia observed within the necrotic material of TB lesions,

where bacterial latency is known to occur [3,17,24]. In this sit-

uation, we might expect a similar morphological adaption of

MTB cells in human host tissue. Thus, it may be more reliable

to investigate the presence of cell-wall free cells in latent TB

patients rather than to look for AFB. Finally, if we are willing

to accept the presence of cell-wall free latent MTB cells, then

newer strategies to prevent their progression should be high-

lighted. Currently, World Health Organization guidelines for

the management of latent TB are only available for people

with HIVand for children <5 years of age who have household

contact with TB cases [45]. This treatment protocol is mainly

based on isoniazid (INH) therapy. INH is a pro drug that inhi-

bits the synthesis of mycolic acid required for the mycobacte-

rial cell wall. As we showed, filtered latent MTB bacilli lack

cell-wall components; therefore, it is difficult to explain how

INH monotherapy can be effective during latency. It may be

possible that INH monotherapy would not kill latent cells,

but would prevent their growth. Recently, a new regimen

called the 12-dose regimen was proposed by Centers for Dis-

ease Control [46]. This regimen reduces treatment from 270

doses given daily for 9 months to 12 once-weekly doses given

for 3 months using a combination of isoniazid and rifapen-

tine. Based on our study, it seems that the 12-dose regimen

may be more effective than monotherapy with INH. In sum-

mary, cell-wall free latent MTB bacilli were characterized both

at the genomic and cellular levels. The information provided

in this study may help resolve questions regarding the nature

of MTB cells in their latent state. A limitation in the interpre-

tation of our results is that direct comparisons should have

been made between the induced latent organisms and those

in the starting culture. However, this does not detract from

the important observation that large numbers of organisms

in the latent state lack a cell wall. Therefore, the potential

impact of this on future treatment of patients with latent

infection must be taken into account.
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