161 research outputs found
Tumor necrosis factor is a necroptosis-associated alarmin
Necroptosis is a form of regulated cell death that can occur downstream of several immune pathways. While previous studies have shown that dysregulated necroptosis can lead to strong inflammatory responses, little is known about the identity of the endogenous molecules that trigger these responses. Using a reductionist in vitro model, we found that soluble TNF is strongly released in the context of necroptosis. On the one hand, necroptosis promotes TNF translation by inhibiting negative regulatory mechanisms acting at the post-transcriptional level. On the other hand, necroptosis markedly enhances TNF release by activating ADAM proteases. In studying TNF release at single-cell resolution, we found that TNF release triggered by necroptosis is activated in a switch-like manner that exceeds steady-state TNF processing in magnitude and speed. Although this shedding response precedes massive membrane damage, it is closely associated with lytic cell death. Further, we found that lytic cell death induction using a pore-forming toxin also triggers TNF shedding, indicating that the activation of ADAM proteases is not strictly related to the necroptotic pathway but likely associated with biophysical changes of the cell membrane upon lytic cell death. These results demonstrate that lytic cell death, particularly necroptosis, is a critical trigger for TNF release and thus qualify TNF as a necroptosis-associated alarmin
Development of Signaling of Telemetric Parameters of Technological Equipment of The Main Gas Pipeline
В данной работе рассматривается разработка сигнализации телеметрических параметров технологического оборудования магистрального газопровода. Результатом работы являются устройства позволяющие организовать беспроводную сигнализацию состояния технологического оборудования. Разработка может быть применена для сигнализации параметров, как для газопровода, так и на различных предприятиях для контроля состояния оборудования. Разработанные устройства дешевле аналогов, позволяет передавать информацию о состоянии оборудования дистанционно и после внедрения позволят предприятию экономить ресурсы на количестве выездов бригад для обслуживания объектов предприятия.In this paper, the development of signaling of telemetric parameters of technological equipment of the main gas pipeline is considered. The result of the work are the devices that allow you to organize wireless signaling of the state of technological equipment. The development can be used to signal parameters, both for a gas pipeline and at various enterprises to monitor the condition of equipment. The developed devices are cheaper than analogues, and allow one to transmit information about the condition of equipment remotely and after implementation will allow the company to save resources on the number of visits of service teams to the facilities of the enterprise
Lack of PPARγ in Myeloid Cells Confers Resistance to Listeria monocytogenes Infection
The peroxisomal proliferator-activated receptor γ (PPARγ) is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγflox/flox). Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6Chi monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection
Molecular mechanisms and cellular functions of cGAS-STING signalling
The cGAS–STING signalling axis, comprising the synthase for the second messenger cyclic GMP–AMP (cGAS) and the cyclic GMP–AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS–STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS–STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid–liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS–STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved
Self-guarding of MORC3 enables virulence factor-triggered immunity
Pathogens use virulence factors to inhibit the immune system1. The guard hypothesis2,3 postulates that hosts monitor (or 'guard') critical innate immune pathways such that their disruption by virulence factors provokes a secondary immune response1. Here we describe a 'self-guarded' immune pathway in human monocytes, in which guarding and guarded functions are combined in one protein. We find that this pathway is triggered by ICP0, a key virulence factor of herpes simplex virus type 1, resulting in robust induction of anti-viral type I interferon (IFN). Notably, induction of IFN by ICP0 is independent of canonical immune pathways and the IRF3 and IRF7 transcription factors. A CRISPR screen identified the ICP0 target MORC34 as an essential negative regulator of IFN. Loss of MORC3 recapitulates the IRF3- and IRF7-independent IFN response induced by ICP0. Mechanistically, ICP0 degrades MORC3, which leads to de-repression of a MORC3-regulated DNA element (MRE) adjacent to the IFNB1 locus. The MRE is required in cis for IFNB1 induction by the MORC3 pathway, but is not required for canonical IFN-inducing pathways. As well as repressing the MRE to regulate IFNB1, MORC3 is also a direct restriction factor of HSV-15. Our results thus suggest a model in which the primary anti-viral function of MORC3 is self-guarded by its secondary IFN-repressing function-thus, a virus that degrades MORC3 to avoid its primary anti-viral function will unleash the secondary anti-viral IFN response
Catalogue bilingue de l'exposition "Sortir de la Guerre/Nach dem Krieg - Le Mans & Paderborn !1919-1930)"
International audienceCette exposition bilingue dresse le panorama d'une période de grands changements dans les deux villes jumelées du Mans et de Paderborn: les années qui suivent la Grande Guerre, qui ne s'appellera "la première" que plus tard. On peut y comparer les évolutions au Mans, ville de la France victorieuse, et à Paderborn, ville du Reich vaincu. Comment les deux villes traversent-elles une période faite de deuil, d'espoir, de grande insécurité? Comment vivent Manceaux et habitant.e.s de Paderborn entre tentation de revanche et désir de rapprochement
TLR8 Is a Sensor of RNase T2 Degradation Products
TLR8 is among the highest-expressed pattern-recognition receptors in the human myeloid compartment, yet its mode of action is poorly understood. TLR8 engages two distinct ligand binding sites to sense RNA degradation products, although it remains unclear how these ligands are formed in cellulo in the context of complex RNA molecule sensing. Here, we identified the lysosomal endoribonuclease RNase T2 as a non-redundant upstream component of TLR8-dependent RNA recognition. RNase T2 activity is required for rendering complex single-stranded, exogenous RNA molecules detectable for TLR8. This is due to RNase T2's preferential cleavage of single-stranded RNA molecules between purine and uridine residues, which critically contributes to the supply of catabolic uridine and the generation of purine-2',3'-cyclophosphate-terminated oligoribonucleotides. Thus-generated molecules constitute agonistic ligands for the first and second binding pocket of TLR8. Together, these results establish the identity and origin of the RNA-derived molecular pattern sensed by TLR8
ICG-001 affects DRP1 activity and ER stress correlative with its anti-proliferative effect
Mitochondria form a highly dynamic network driven by opposing scission and
fusion events. DRP1 is an essential modulator of mitochondrial fission and dynamics
within mammalian cells. Its fission activity is regulated by posttranslational
modifications such as activating phosphorylation at serine 616. DRP1 activity has
recently been implicated as being dysregulated in numerous human disorders such as
cancer and neurodegenerative diseases. Here we describe the development of a cellbased
screening assay to detect DRP1 activation. We utilized this to undertake focused
compound library screening and identified potent modulators that affected DRP1
activity including ICG-001, which is described as WNT/β-catenin signaling inhibitor.
Our findings elucidate novel details about ICG-001’s mechanism of action (MOA) in
mediating anti-proliferative activity. We show ICG-001 both inhibits mitochondrial
fission and activates an early endoplasmic reticulum (ER) stress response to induce
cell death in susceptible colorectal cancer cell lines
ICG-001 affects DRP1 activity and ER stress correlative with its anti-proliferative effect
Mitochondria form a highly dynamic network driven by opposing scission and fusion events. DRP1 is an essential modulator of mitochondrial fission and dynamics within mammalian cells. Its fission activity is regulated by posttranslational modifications such as activating phosphorylation at serine 616. DRP1 activity has recently been implicated as being dysregulated in numerous human disorders such as cancer and neurodegenerative diseases. Here we describe the development of a cellbased screening assay to detect DRP1 activation. We utilized this to undertake focused compound library screening and identified potent modulators that affected DRP1 activity including ICG-001, which is described as WNT/β-catenin signaling inhibitor. Our findings elucidate novel details about ICG-001’s mechanism of action (MOA) in mediating anti-proliferative activity. We show ICG-001 both inhibits mitochondrial fission and activates an early endoplasmic reticulum (ER) stress response to induce cell death in susceptible colorectal cancer cell lines
- …