119 research outputs found

    Comparative estrogenic activity of wine extracts and organochlorine pesticide residues in food.

    Get PDF
    The human diet contains industrial-derived, endocrine-active chemicals and higher levels of naturally occurring compounds that modulate multiple endocrine pathways. Hazard and risk assessment of these mixtures is complicated by noadditive interactions between different endocrine-mediated responses. This study focused on estrogenic chemicals in the diet and compared the relative potencies or estrogen equivalents (EQs) of the daily consumption of xenoestrogenic organochlorine pesticides in food (2.44 micrograms/day) with the EQs in a single 200-ml glass of red cabernet wine. The reconstituted organochlorine mixture contained 1,1,1-trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl)ethane, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene, endosulfan-1, endosulfan-2, p,p'-methoxychlor, and toxaphene; the relative proportion of each chemical in the mixture resembled the composition reported in a recent U.S. Food and Drug Administration market basket survey. The following battery of in vitro 17 beta-estradiol (E2)-responsive bioassays were utilized in this study: competitive binding to mouse uterine estrogen receptor (ER); proliferation in T47D human breast cancer cells; luciferase (Luc) induction in human HepG2 cells transiently cotransfected with C3-Luc and the human ER, rat ER-alpha, or rat ER-beta; induction of chloramphenicol acetyltransferase (CAT) activity in MCF-7 human breast cancer cells transfected with E2-responsive cathepsin D-CAT or creatine kinase B-CAT plasmids. For these seven in vitro assays, the calculated EQs in extracts from 200 ml of red cabernet wine varied from 0.15 to 3.68 micrograms/day. In contrast, EQs for consumption of organochlorine pesticides (2.44 micrograms/day) varied from nondetectable to 1.24 ng/day. Based on results of the in vitro bioassays, organochlorine pesticides in food contribute minimally to dietary EQ intake

    Prevention of benzene-induced myelotoxicity by nonsteroidal anti-inflammatory drugs.

    Get PDF
    Benzene affects hematopoietic progenitor cells leading to bone marrow depression and genotoxic effects such as micronucleus formation. Progenitor cell proliferation and differentiation are inhibited by prostaglandins produced by macrophages. Administration of benzene to DBA/2 or C57BL/6 mice caused a dose-dependent bone marrow depression and a significant increase in marrow prostaglandin E level and both were prevented by the coadministration of indomethacin and other inhibitors of the cyclooxygenase component of prostaglandin H synthase. Levels of benzene that decreased bone marrow cellularity also caused genotoxic effects measured as increased micronucleated polychromatic erythrocytes in peripheral blood, which was also prevented by the coadministration of indomethacin. These results suggest a possible role for prostaglandin synthase in benzene myelotoxicity; a mechanism by which this might occur is presented

    Proposed Role for COUP-TFII in Regulating Fetal Leydig Cell Steroidogenesis, Perturbation of Which Leads to Masculinization Disorders in Rodents

    Get PDF
    Reproductive disorders that are common/increasing in prevalence in human males may arise because of deficient androgen production/action during a fetal ‘masculinization programming window’. We identify a potentially important role for Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) in Leydig cell (LC) steroidogenesis that may partly explain this. In rats, fetal LC size and intratesticular testosterone (ITT) increased ∼3-fold between e15.5-e21.5 which associated with a progressive decrease in the percentage of LC expressing COUP-TFII. Exposure of fetuses to dibutyl phthalate (DBP), which induces masculinization disorders, dose-dependently prevented the age-related decrease in LC COUP-TFII expression and the normal increases in LC size and ITT. We show that nuclear COUP-TFII expression in fetal rat LC relates inversely to LC expression of steroidogenic factor-1 (SF-1)-dependent genes (StAR, Cyp11a1, Cyp17a1) with overlapping binding sites for SF-1 and COUP-TFII in their promoter regions, but does not affect an SF-1 dependent LC gene (3β-HSD) without overlapping sites. We also show that once COUP-TFII expression in LC has switched off, it is re-induced by DBP exposure, coincident with suppression of ITT. Furthermore, other treatments that reduce fetal ITT in rats (dexamethasone, diethylstilbestrol (DES)) also maintain/induce LC nuclear expression of COUP-TFII. In contrast to rats, in mice DBP neither causes persistence of fetal LC COUP-TFII nor reduces ITT, whereas DES-exposure of mice maintains COUP-TFII expression in fetal LC and decreases ITT, as in rats. These findings suggest that lifting of repression by COUP-TFII may be an important mechanism that promotes increased testosterone production by fetal LC to drive masculinization. As we also show an age-related decline in expression of COUP-TFII in human fetal LC, this mechanism may also be functional in humans, and its susceptibility to disruption by environmental chemicals, stress and pregnancy hormones could explain the origin of some human male reproductive disorders

    Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens.</p> <p>Methods</p> <p>We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH<sub>3</sub>/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively).</p> <p>Results</p> <p>All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses.</p> <p>Conclusions</p> <p>Responses mediated by endogenous estrogens representing different life stages are vulnerable to very low concentrations of these structurally related xenoestrogens. Because of their non-classical dose-responses, they must be studied in detail to pinpoint effective concentrations and the directions of response changes.</p

    Evidence that involucrin, a marker for differentiation, is oxygen regulated in human squamous cell carcinomas

    Get PDF
    Hypoxia is associated with poor prognosis in squamous cell carcinomas affecting both local control and distant spread (Hockel et al., 1996a, 1996b, 1999; Nordsmark et al, 1996; Fyles et al, 2002; Kaanders et al, 2002). Local control is believed to depend on local radiation response while distant spread is thought to depend, at least in part, on the induction of oxygen-regulated proteins. In order to test this, pimonidazole, an extrinsic marker for tissue hypoxia (Arteel et al, 1995; Kennedy et al, 1997; Varia et al, 1998; Raleigh et al, 1999), with prognostic value (Kaanders et al, 2002) was used to examine whether ORPs such as VEGF (Raleigh et al, 1998a), metallothionein (Raleigh et al, 2000), HIF-1α (Janssen et al, 2002), Glut-1 (Airley et al, 2003) and CAIX (Olive et al, 2001) were, in fact, associated with cellular hypoxia in human tumours. Unexpectedly, VEGF and metallothionein (MT) were not expressed in the majority of hypoxic cells in squamous cell carcinomas (Raleigh et al, 1998a, 2000) even though these ORPs were induced by hypoxia in experimental systems (Shweiki et al, 1992; Raleigh et al, 1998b; Murphy et al, 1999)
    corecore