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The majority of hypoxic cells in squamous cell carcinomas of the head and neck and cervix express involucrin, a molecular marker for
differentiation. This raises the question of whether involucrin is an oxygen-regulated protein and, if so, whether it could serve as an
endogenous marker for tumour hypoxia. Consistent with oxygen regulation, involucrin protein was found to increase with increasing
hypoxia in confluent cultures of moderately differentiated human SCC9 cells. Cells harvested at the point of confluence and exposed
to graded concentrations of oxygen revealed a Km of approximately 15 mmHg for involucrin induction. This is similar to Kms for HIF-
1a, CAIX and VEGF. Involucrin induction showed a steep dependence on pO2 with a transition from minimum to maximum
expression occurring over less than an order of magnitude change in pO2. In contrast to SCC9 cells, involucrin was not induced by
hypoxia in poorly differentiated SCC4 cells. It is concluded that involucrin is an oxygen-regulated protein, but that differentiation
modulates its transcription status with respect to hypoxia induction.
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Hypoxia is associated with poor prognosis in squamous cell
carcinomas affecting both local control and distant spread (Hockel
et al., 1996a, b, 1999; Nordsmark et al, 1996; Fyles et al, 2002;
Kaanders et al, 2002). Local control is believed to depend on local
radiation response while distant spread is thought to depend, at
least in part, on the induction of oxygen-regulated proteins. In
order to test this, pimonidazole, an extrinsic marker for tissue
hypoxia (Arteel et al, 1995; Kennedy et al, 1997; Varia et al, 1998;
Raleigh et al, 1999), with prognostic value (Kaanders et al, 2002)
was used to examine whether ORPs such as VEGF (Raleigh et al,
1998a), metallothionein (Raleigh et al, 2000), HIF-1a (Janssen et al,
2002), Glut-1 (Airley et al, 2003) and CAIX (Olive et al, 2001) were,
in fact, associated with cellular hypoxia in human tumours.
Unexpectedly, VEGF and metallothionein (MT) were not expressed
in the majority of hypoxic cells in squamous cell carcinomas
(Raleigh et al, 1998a, 2000) even though these ORPs were induced
by hypoxia in experimental systems (Shweiki et al, 1992; Raleigh
et al, 1998b; Murphy et al, 1999).

A possible explanation for this apparent anomaly was found in
reports that VEGF and MT are expressed in oxygenated basal
lamina of normal stratified epithelia and not in more differ-
entiated, suprabasal layers farthest from the blood vessels (Quaife
et al, 1994; Sundelin et al, 1997; Viac et al, 1997). This led to the
conclusion that VEGF and MT are downregulated by differentia-
tion in stratified epithelia (Quaife et al, 1994; Viac et al, 1997). In
analogy with their untransformed counterpart, squamous cell
carcinomas often express markers for terminal differentiation in
the centre of tumour nests farthest from blood vessels (Roland

et al, 1996). Pimonidazole binding was known to occur in these
regions (Kennedy et al, 1997), and subsequent studies demon-
strated that the majority of the hypoxic cells express involucrin, a
molecular marker for epithelial cell differentiation (Raleigh et al,
2000). It was concluded, therefore, that the lack of VEGF and MT
expression in hypoxic cells was due to downregulation by
differentiation. At the same time, it appeared that involucrin
might be an oxygen-regulated protein.

Involucrin is a 96 kDa cell envelope protein that appears in free
form in the early stages of keratinocyte terminal differentiation.
During the late stages of differentiation, involucrin is crosslinked
with proteins and lipids to form cornified cell envelopes in the
uppermost cells of stratified epithelia (Eckert and Welter, 1996).
Five AP-1 consensus sites exist in the promoter region of the
involucrin gene with two sites accounting for 80% of promoter
activity (Crish et al, 2002). One site is proximal while the other is
distal to the transcription start site. The proximal site is regulated
via a mitogen-activated protein kinase pathway that includes PKC,
Ras, MEKK1, MEK3 and p38/RK (Efimova et al, 1998). Gel
supershift analyses show that junB, junD and Fra-1 are the major
AP-1 transcription factors regulating involucrin expression (Eckert
and Welter, 1996). However, cotransfection of involucrin promoter
constructs with c-jun and c-fos can increase involucrin promoter
activity, indicating that c-Jun also stimulates involucrin transcrip-
tion (Takahashi and Iizuka, 1993; Efimova et al, 1998). Although
involucrin had not been identified previously as an ORP, c-Jun/
AP-1 is known to be responsive to hypoxia in squamous cell
carcinoma cells (Bandyopadhyay et al, 1995; Laderoute et al, 2002)
and it was conceivable that involucrin expression was oxygen
regulated.

The present investigation examines whether involucrin is
oxygen regulated in an in vitro model comprising moderately
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differentiated SCC9 and poorly differentiated SCC4 squamous cell
carcinoma cells (Rheinwald and Beckett, 1980, 1981). The model
was of interest because Rice et al (1988) had shown that involucrin
increases spontaneously in postconfluent cultures of SCC9 cells.
Hypoxia is generated in unstirred, high-density cell cultures (Boag,
1969; Whillans and Rauth, 1980; Jones, 1985; Kaluz et al, 2002)
and, although other explanations are possible, it seemed that
involucrin might be induced by hypoxia in the SCC9 cultures.

Investigations of potentially useful endogenous markers of
hypoxia such as CAIX and Glut-1 have shown that immunostain-
ing for these proteins extends beyond the edges of pimonidazole
binding (Olive et al, 2001; Kaanders et al, 2002; Airley et al, 2003).
Many oxygen-regulated processes are half maximally induced at
oxygen partial pressures (Km¼ 6 –20 mmHg) (Leith and Michel-
son, 1995; Jiang et al, 1996; Chiarotto and Hill, 1999; Wykoff et al,
2000) that would strongly inhibit the binding of nitroimidazole
hypoxia markers such as pimonidazole, EF5 and misonidazole
(Km ¼ 0.8–2.0 mmHg) (Franko et al, 1987; Arteel et al, 1995; Gross
et al, 1995; Koch et al, 1995). This could account for the
immunostaining patterns for Glut-1 and CAIX. If involucrin were
also induced in the range of 6– 20 mmHg, it might be expressed in
tumour microregions that did not bind detectable levels of
pimonidazole. In order to explore this possibility, the Km for
involucrin expression has been measured in suspension cultures of
SCC9 cells.

In poorly differentiated squamous cell carcinomas, involucrin
immunostaining is generally weak even in tumour regions that
avidly bind pimonidazole (Azuma et al, 2003). This would appear
to be inconsistent with oxygen regulation. However, the transcrip-
tion status of oxygen-regulated genes can be coregulated by
differentiation (Webster et al, 1990; Claffey et al, 1992; Quaife et al,
1994; Levy and Kelly, 1997; Viac et al, 1997) and the effect of
differentiation on involucrin expression was therefore examined
by comparing its expression in moderately differentiated SCC9 and
poorly differentiated SCC4 cells exposed to acute and chronic
hypoxia.

MATERIALS AND METHODS

Chemicals

The hypoxia marker, pimonidazole hydrochloride (Hypoxypro-
bet-1; Chemicon International Inc., Temecula, CA, USA), was
used as previously described (Arteel et al, 1995; Kennedy et al,
1997; Varia et al, 1998; Raleigh et al, 1999, 2000). 4-Nitrophenyl
phosphate (alkaline phosphatase substrate), phosphate-buffered
saline (PBS) pellets, foetal bovine serum and hydrocortisone (cat #
H-0396) were obtained from Sigma (St Louis, MO, USA). Liquid
3,30-diaminobenzidine (DAB) peroxidase substrate was obtained
from DAKO Corp (Carpinteria, CA, USA). Aqueous 2% formalin
was obtained from Polysciences, Inc. (Warrington, PA, USA).
Enzyme-grade polyoxyethylene ether (Brij 35), polyoxyethylene-
sorbitan monolaurate (Tween 20), tris(hydroxymethyl)amino-
methane (Tris), Biomeda Crystal/Mount, ProbeOn Plus glass
slides and miscellaneous reagent-grade chemicals were obtained
from Fisher Scientific Company (Norcross, GA, USA). Aqua
Haematoxylin was obtained from Innovex Biosciences (Richmond,
CA, USA). Gas tanks containing certified quantities of oxygen and
5% CO2 balanced with nitrogen were purchased from National
Welders Supply Company, Inc. (Raleigh, NC, USA).

Immunological reagents

Supernatant from hybridoma clone 4.3.11.3 containing antipimo-
nidazole IgG1 monoclonal antibody at a concentration of
70 mg ml�1 (Chemicon International Inc., Temecula, CA, USA)
was used for the immunohistochemical detection of protein

adducts of reductively activated pimonidazole as described
previously (Arteel et al, 1995; Kennedy et al, 1997; Varia et al,
1998). Diluted aliquots of rabbit polyclonal antipimonidazole
antisera were used for the enzyme-linked immunosorbent assay
(ELISA) of pimonidazole binding to cell lysates (Arteel et al, 1995).
A biotin-conjugated F(ab0)2 fragment of a rabbit anti-mouse IgG
was obtained from Accurate Chemical Scientific Corp. (Westbury,
NY, USA) and used as the secondary reagent for the immunohis-
tochemical detection of pimonidazole binding. Protein blocker and
peroxidase-conjugated streptavidin were obtained from DAKO
Corp. An IgG1 mouse anti-human involucrin antibody clone SY5
used for the immunohistochemical detection of involucrin was
obtained from Sigma. An ELISA kit containing rabbit anti-human
involucrin antisera and affinity-purified goat anti-rabbit IgG
conjugated to alkaline phosphatase used to detect involucrin in
cell lysates were obtained from Biomedical Technologies Inc.
(Stoughton, MA, USA).

Confluent cell culture

SCC9 and SCC4 cell lines derived from a squamous cell carcinoma
of the human tongue (American Type Culture Collection, Rock-
ville, MD, USA) were grown in Dulbecco’s modified eagle medium/
F12 containing 1.0 mM. calcium ion concentration and supplemen-
ted with 10% foetal bovine serum, 0.4 mg ml�1 of hydrocortisone
and 14 mM of sodium bicarbonate. Cells were seeded at a density of
3� 105 cells in 100-mm diameter culture dishes. Every 3 days, the
culture medium was exchanged with fresh medium containing
100mM pimonidazole hydrochloride as hypoxia marker. Cell
samples were harvested at 1, 4, 6, 9 and 12 days after confluence.
Harvested cells were washed three times with cold PBS and cell
densities were measured by cytometry. Cells were lysed in cold
buffer containing 0.2 mM EDTA, 10 mM Tris, 0.5% Triton X-100
and 200 ml/106 cells of proteinase inhibitors (1.0 mg ml�1 of
Leupeptin, 1.0 mg ml�1 of pepstatin and 1 mM phenylmethylsul-
phonyl fluoride) (Gaido and Maness, 1994). Cell lysates were
stored at –801C until they were analysed by ELISA for
pimonidazole adducts and involucrin.

Immunostaining confluent cultures for involucrin and
pimonidazole adducts

SCC9 cells were added to a six-well tissue culture plate at a density
of 105 cells per well. Each well contained four 22 mm square cover
glass slides to which the cells attached. At 2 days prior to
confluence, at confluence and 5 days after confluence, cells on the
glass slides were fixed with 2% of formaldehyde in PBS for 20 min.
The slides were washed and permeabilised with 0.02% of saponin
in PBS containing 5% of serum-free protein block for 30 min. Fixed
cells were incubated with antipimonidazole IgG1 monoclonal
antibody 4.3.11.3 (1 : 50) and anti-human involucrin monoclonal
antibody (1 : 100) for 1 h. The cells were then incubated with
biotin-conjugated rabbit anti-mouse F(ab0)2 IgG antibody (1 : 500)
for 30 min . The cells were incubated with streptavidin-conjugated
peroxidase for 20 min and colour developed by incubation with
DAB for 10 min. The cells were counterstained with haematoxylin
at room temperature for 25 s and washed. The cover slides were
placed on a microscope slide, with the cells facing the surface of
the microscope slide and mounted with CrystalMount.

Exposure of cells to hypoxia in suspension culture

When SCC9 and SCC4 cells reached confluence they were
trypsinised and collected. Aliquots of 5� 106 cells in 25 ml of
culture medium containing 100 mM pimonidazole hydrochloride
and 1.0 mM calcium ion were added to 250 ml glass vessels fitted
with PTFE inlet and outlet stopcocks and a small diameter
injection port (cat.# 7401–50; Ace Glass, Inc., Vineland, NJ, USA).
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In order to minimise cell adhesion, the vessels were silanised by
treatment with Sigmacote (Sigma, St Louis, MO, USA) followed by
extensive washing with distilled water. Cells were kept in
suspension by attaching the gassing vessel to the deck of an
orbital shaker (Model SS110504; Integrated Separation Systems,
Natick, MA, USA) in a warm room maintained at 371C. The system
was flushed for 20 min in order to remove oxygen dissolved in
nonglass components of the system. These included two PTFE
stopcocks, a small red rubber septum port, PTFE unions
connecting gas wash bottles to nylon transmission tubing (12723
Universal Connector; Ace Glass, Inc.), short lengths of flexible
tygon tubing that connected reciprocating glass tubes to stiff, low-
permeability 3/16 inch internal diameter nylon transmission
tubing (A-06489-06; Cole-Palmer Instrument Co., Vernon Hills,
IL, USA) and 150 ml of distilled water in a gas wash bottle used to
humidify the gas stream. Following flushing, the system was
subjected to 12 rounds of partial vacuum followed by pressurisa-
tion with gas phases containing 10, 100, 500, 5000, 10 000, 20 000 or
25 000 ppm oxygen and 5% CO2 balanced with nitrogen. The gas
exchanges – which were carried out over a period of 5 min –
facilitated the rapid equilibration of molecular oxygen in gas and
aqueous phases. Once equilibrated, cells were incubated with
shaking under a continuous flow of gas. Previous studies showed
that cell viability is not affected by this procedure (Arteel et al,
1995). Teflon and nylon have low oxygen permeability (see Cole-
Palmer Instrument Company 2003/04 catalogue, p.1910) and once
flushed were not expected to be a source of oxygen contamination.
Rubber and tygon are more permeable, but oxygen contamination
from rubber septa and short lengths of tygon tubing was also
considered to be insignificant in a system equilibrated and then
continuously flushed with a flow of gas. Whillans and Rauth (1980)
have shown that continuous flushing following equilibration is
adequate to control pO2 down to at least 0.01% even when
relatively long sections of tygon tubing are used.

The Km experiment was repeated twice and the data points
averaged for both pimonidazole binding and involucrin expres-
sion. Control experiments showed that the presence of pimonida-
zole did not affect involucrin expression. Cells were collected,
washed three times with cold PBS and cell densities were measured
by cytometry. Cells were lysed and stored at –801C for subsequent
ELISA analysis for involucrin and pimonidazole adducts.

ELISA

The ELISA for pimonidazole adducts followed a previously
published method for 2-nitroimidazole hypoxia markers (Raleigh
et al, 1994; Thrall et al, 1994; Arteel et al, 1995), except that cell
lysates were prepared by homogenisation without pronase K
digestion. Briefly, 100ml well�1 of serial dilutions of cell lysates and
serial dilutions of pimonidazole hydrochloride standards were
incubated for 1 h at 371C in 96-well microtitre plates containing
100ml well�1 of rabbit polyclonal antipimonidazole antisera diluted
6 : 10 000 in PBS-Tween (0.05% Tween 20 in PBS). The mixtures
were transferred to ELISA plates coated with a Ficoll-pimonidazole
conjugate as solid-phase antigen and the plates incubated for 1 h at
371C. The plates were washed with PBS-Tween by means of an
Ultrawash plate washer (Dynex Technologies Inc., Chantilly, VA,
USA); 100 ml well�1 of a 1 : 2000 goat anti-rabbit antibody
conjugated with alkaline phosphatase was added, and the plates
were incubated for 1 h at 371C. The plates were washed and
100ml well�1 of a 1 mg ml�1 solution of alkaline phosphatase
substrate dissolved in 10% diethanolamine pH 9.8 buffer was
added. Colour development at 405 nm was followed for 5 min by
means of a Molecular Devices plate reader. Kinetic data were
analysed by means of Vmax DeltaSoft 3 software (Biometallics,
Inc., Princeton, NJ, USA). ELISA data were corrected for the fact
that pimonidazole hydrochloride, although a convenient standard,
is 25 less effective as a competitive inhibitor than protein adducts

of pimonidazole (Arteel et al, 1995). The data were normalised to
cell lysate protein content as measured by the Bio-Rad Dc protein
assay (Bio-Rad, Hercules, CA, USA) using bovine serum albumin
as a standard.

The involucrin ELISA kit was used according to the directions
provided by Biomedical Technologies Inc. In the final step, a
secondary goat anti-rabbit IgG-conjugated alkaline phosphatase
was used to detect the binding of the antiinvolucrin rabbit antisera
to involucrin solid phase antigen. End point colour development at
405 nm associated with the hydrolysis of 4-nitrophenyl phosphate
was recorded after 30 min. ELISA data for involucrin were
normalised for protein content in the cell lysates using bovine
serum albumin as a standard.

Clinical samples

Contiguous tumour sections immunostained for involucrin and
pimonidazole binding were available from head and neck
squamous cell carcinomas from an earlier study (Raleigh et al,
2000). The study had received local Institutional Review Board
approval for the type of experiment described here. Patients
enrolled in the study had signed informed consent forms prior to
their participation in the study (Raleigh et al, 2000). The
Hypoxyprobe-1 used for the clinical studies was obtained from
NPI, Incorporated (Belmont, MA, USA).

RESULTS

Involucrin and hypoxia in confluent cultures of SCC9 and
SCC4 cells

ELISA measurements revealed a steady increase in involucrin
expression in SCC9 cells beginning ca 4 days postconfluence. The
increase in involucrin expression was associated with an increase
in pimonidazole binding in the cultures. The maximum involucrin
protein expression occurred ca 9 days postconfluence (Figure 1).
Pimonidazole binding increased in confluent cultures of SCC4 cells
but, unlike SCC9 cells, a corresponding increase in involucrin did
not occur (Figure 2).

Immunostaining of postconfluent SCC9 cell cultures showed
punctate patterns for both involucrin expression and pimonida-
zole binding. That is, the whole culture was not hypoxic but rather
subsets of cells within the cultures formed pimonidazole adducts
(data not shown). Owing to piling up in the cultures, it has not
been possible to determine whether pimonidazole-positive cells are
also involucrin positive by microscopic examination of dual
stained slides (data not shown).
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Figure 1 Involucrin expression (solid circles) and pimonidazole binding
(open circles) in moderately differentiated SCC9 cells growing in confluent
culture in the presence of 1.0 mM calcium ion. The increase in involucrin
expression more or less parallels that for pimonidazole binding. The
involucrin data are similar to those reported by others (Rice et al, 1988).
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Km for involucrin expression in suspension cultures of
SCC9 cells

Involucrin induction was half maximal at a gas phase oxygen
concentration of approximately 20 000 ppm for SCC9 cells
harvested at the point of confluence and exposed to graded
concentrations of oxygen for 2 h (Figure 3). A gas phase
concentration of 20 000 ppm is equivalent to a partial pressure of
15 mmHg, a gas phase concentration of 2% or a dissolved oxygen
concentration of 21 mM at 371C. Cells harvested 9 days postcon-
fluence, when involucrin expression was at a maximum, showed
no additional induction of involucrin during acute exposure to
hypoxia in suspension culture. As was the case in confluent
cultures, involucrin was not induced in SCC4 cells during hypoxic
exposure in suspension culture.

The Km for involucrin induction was ca 40 times higher than
that for pimonidazole binding in SCC9 cells (Figure 3). Further-
more, the oxygen dependence for involucrin expression in SCC9
cells was much steeper than that for pimonidazole binding,
increasing from minimum to maximum over less than one order of
magnitude change in pO2 compared to pimonidazole binding that
rose from minimum to maximum over two orders of magnitude as

expected for a competition between pimonidazole and oxygen for
reducing equivalents (Arteel et al, 1998).

Immunostaining patterns for involucrin and hypoxia in
head and neck squamous cell carcinomas

Figure 4 shows representative examples of immunostaining for
involucrin expression and pimonidazole binding in contiguous
sections taken from squamous cell carcinomas of the head neck.
Figure 4A and B are derived from a well-differentiated (Grade 1)
squamous cell carcinoma of the floor of the mouth. In this case,
immunostaining for involucrin extends well beyond the edges of
immunostaining for pimonidazole adducts and, in some regions,
involucrin is expressed in the absence of pimonidazole binding.
Figure 4C and D are derived from a moderately differentiated
(Grade 2) tumour of the larynx. In this case, the extent of
immunostaining for involucrin conforms more closely to that for
pimonidazole adducts, with the extent of immunostaining differing
by a factor of only ca 1.5. Figure 4E and F are derived from a
poorly differentiated (Grade 3) squamous cell carcinoma of the
larynx. In this case, little or no involucrin is expressed even in the
presence of substantial amounts of pimonidazole binding.

DISCUSSION

Involucrin expression increases with increasing hypoxia in
confluent cultures of SCC9 cells consistent with the idea that
involucrin is an oxygen-regulated protein. The induction of
involucrin during hypoxic exposure of SCC9 cells in suspension
culture confirms that involucrin can be induced by hypoxia in
moderately differentiated squamous cell carcinoma cells. Induc-
tion occurs over a period of 2 h and is, therefore, relatively rapid.
In contrast to SCC9 cells, hypoxia induces little or no involucrin in
poorly differentiated SCC4 cells in spite of the fact that the
involucrin gene is reported to be functional with ample quantities
of involucrin mRNA present in these cells (Gibson et al, 1996).
Interestingly, Gibson et al observed a distinction between well-
differentiated keratinocytes and poorly differentiated SCC4 cells
with respect to calcium ion-induced involucrin expression. In
particular, high calcium concentration induced involucrin mRNA
and protein in keratinocytes but not in poorly differentiated SCC4
cells (Gibson et al, 1996). This similarity between calcium and
hypoxia regulation might be important for understanding how
hypoxia induces involucrin. For example, Salnikow et al (2002)
have described an HIF-1a independent pathway for the hypoxia
induction of AP-1 regulated genes in which hypoxia-induced
intracellular calcium release and subsequent interaction at AP-1
promoter sites are key events. Calcium ion concentration is known
to increase in the outer layers of stratified epithelia (Denda et al,
2000) and it is conceivable that hypoxia interacts with calcium ions
to stimulate the production of involucrin and other AP-1-
dependent proteins. Experiments are underway to test whether
the effect hypoxia on involucrin induction is direct or one
mediated by intracellular calcium ions. It should be noted that the
process of differentiation itself is initiated in the well-oxygenated
basal cells of stratified epithelia (Watt, 1983) and is unlikely,
therefore, to be initiated by hypoxia.

Involucrin induction has a time course similar to that for
pimonidazole binding but is distinguished by a very steep
dependence on pO2. A similarly steep dependence has been
reported for VEGF mRNA induction in a number of cell lines
(Chiarotto and Hill, 1999). This steepness of response is
reminiscent of synergistic interactions and it is tempting to
speculate that these might involve interactions between hypoxia
and calcium ions reported for the case of VEGF (Salnikow et al,
2002). Involucrin induction is further distinguished from pimoni-
dazole binding in that the Km (15 mmHg) is similar to that for
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Figure 2 Involucrin expression (solid circles) and pimonidazole binding
(open circles) in poorly differentiated SCC4 cells growing in confluent
culture in the presence of 1.0 mM calcium ion concentration. Little or no
involucrin is induced in the cultures, even though pimonidazole binding
indicates the presence of hypoxia in the cultures.

1 2 3 4
0

25

50

P
er

ce
nt

 o
f 

m
ax

im
um 75

100

Log [O2] (ppm)

Figure 3 Km curves for involucrin (solid circles) and pimonidazole
binding (open circles) in SCC9 cells exposed for 2 h to different pO2 in the
presence of 1.0 mM calcium ion concentration. The data represent averages
of two independent experiments. Range of data for the two experiments is
shown where it exceeded the dimension of the data symbol. Note the 40-
fold difference in Km between involucrin induction and pimonidazole
binding and the steep pO2 dependence for involucrin induction.
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VEGF (Leith and Michelson, 1995; Chiarotto and Hill, 1999) and,
therefore, ca 40 times higher than that for pimonidazole binding
(0.4 mmHg). The rapid rate of induction, steep pO2 dependence
and high Km could be important in understanding immunostain-
ing patterns for involucrin in squamous cell carcinomas.

In well-differentiated tumours, immunostaining for involucrin is
more extensive than that for pimonidazole binding and in some
areas, involucrin is expressed in the absence of pimonidazole
binding (Figure 4A and B; Azuma et al, 2003). Superficially, a 40-
fold difference in Km for involucrin induction and pimonidazole
binding might account for this. However, it does not explain why
immunostaining for involucrin more closely matches pimonida-
zole binding in moderately differentiated tumours (Figure 4C and
D) where the extent of immunostaining differs by a factor of only
ca 1.5. A similar small factor of ca 2 has been reported for the
difference between the extent of CAIX expression and pimonida-
zole binding in squamous cell carcinomas (Olive et al, 2001). One
explanation is that different levels of acute hypoxia exist in the two

tumours (Pigott et al, 1996). That is, the more extensive
immunostaining for involucrin is due to rapid induction during
acute changes in hypoxia that pimonidazole binding cannot match.
However, both pimonidazole binding and involucrin are easily
detected within 2 h of hypoxic exposure in vitro making this
explanation less likely. A second possibility is that hypoxia
developed during the time between pimonidazole washout (plasma
t1/2¼ ca 5 h) and tumour biopsy, but this would require a major
change in oxygen distribution in the tumour depicted in Figure 4A
and B, which seems unlikely.

A third possible explanation for immunostaining patterns in
Figure 4 is that oxygen gradients are steeper in moderately
differentiated tumours than in well-differentiated tumours. Steep
oxygen gradients would foreshorten the distance over which
divergent Kms are traversed, possibly reducing the distance to the
two or three cell diameters observed in moderately differentiated
tumours (Figure 4C and D) and in normal tissues such as the liver
and kidney (Arteel et al, 1995; Zhong et al, 1998). Conversely,

Figure 4 Immunostaining patterns for involucrin expression (left panels) and pimonidazole binding (right panels) in contiguous sections from squamous
cell carcinomas (SCC) of the head and neck. (A and B) Immunostaining for involucrin and pimonidazole adducts, respectively, in sections from a Grade 1
floor of the mouth SCC. (C and D) Immunostaining for involucrin and pimonidazole adducts in sections from a Grade 2 larynx SCC. Immunostaining for
involucrin (A) extends well beyond that for pimonidazole binding (B) and is expressed in the absence of pimonidazole binding in some microregions. (C and
D) Immunostaining for involucrin and pimonidazole adducts is closely matched with the extent of involucrin immunostaining covering an area ca 1.5 that for
pimonidazole. (E and F) Immunostaining for involucrin and pimonidazole adducts in sections from a Grade 3 larynx SCC. Little or no involucrin expression is
observed in the presence of extensive pimonidazole binding. Original magnification: � 12.5.
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shallow gradients would increase the distance over which divergent
Kms are traversed allowing for involucrin induction in advance of
pimonidazole binding as appears to be the case in Figure 4A and B.
Variations in the slope of oxygen gradients have been proposed to
account for the lack of nitroimidazole binding around areas of
necrosis in a subset of glioma xenografts (Parliament et al, 1997;
Franko et al, 1998; Turcotte et al, 2002), but it remains to be seen
whether this occurs among subsets of squamous cell carcinomas.

Poorly differentiated tumours express very little involucrin even
in the areas of extensive pimonidazole binding. This is observed
for squamous cell carcinomas of the head and neck (Figure 4E and
F) and uterine cervix (Azuma et al, 2003). While this does not
appear to be consistent with oxygen regulation, it matches in vitro
data where involucrin is induced by hypoxia in moderately
differentiated SCC9 cells but not in poorly differentiated SCC4
cells. While there is no basis for believing that the mechanism that
prevents involucrin induction in SCC4 cells is exactly the same as
that which prevents involucrin expression in the hypoxic regions
of poorly differentiated squamous cell carcinomas, the model
system does show that dedifferentiation can suppress involucrin
induction by hypoxia.

Hypoxia inhibits differentiation in some cell lines (Sahai et al,
1997) and possibly in breast carcinomas (Helczynska et al, 2003),
but the association between hypoxia and involucrin expression
(Figures 1, 3 and 4) indicates that this might not be true for
squamous cell carcinomas. It is important to emphasise, however,
that involucrin is an early marker for terminal differentiation so
that tumour hypoxia, while not totally inhibiting differentiation,
might arrest it at some point short of end stage differentiation. Cell
lines derived from a poorly differentiated squamous cell carcino-
ma, for example, can express involucrin without losing prolif-
erative capability (Auersperg et al, 1989). This is also true of SCC9
cells where confluent cells are easily subcultured in spite of
possessing substantial levels of involucrin. Clearly, the presence of
involucrin need not be a sign of end stage differentiation and

further work will be required to define the extent to which hypoxic
cells in squamous cell carcinomas are differentiated. This could be
important because it is known that differentiation increases
radiosensitivity in human carcinoma cells under both hypoxic
and aerobic conditions (Hallows et al, 1988; Hoffmann et al, 1999).
Radiosensitisation might be due to inhibited DNA repair arising
from the limited access of DNA repair machinery in differentiated
cells (Wheeler and Wierowski, 1983). To the extent that the in vitro
results apply clinically, hypoxic cells that are more differentiated
might be less radioresistant than otherwise thought.

A recurring theme in the study of endogenous hypoxia markers
– whether it be HIF-1a, CAIX, Glut-1 or involucrin – is
heterogeneity of expression (Olive et al, 2001; Wiesener et al,
2001; Haugland et al, 2002; Janssen et al, 2002; Kaanders et al,
2002; Airley et al, 2003). The basis for heterogeneity in the case of
involucrin appears to be related to cell differentiation. In the case
of HIF-1a, functional inactivation of the von Hippel Lindau factor
might be the most important factor (Wiesener et al, 2001;
Haugland et al, 2002; Janssen et al, 2002; Turner et al, 2002).
Endogenous ORPs appear to be useful as hypoxia markers in
normal tissues (e.g. Lee et al, 2001), but without a good
understanding of the factors that control ORP expression,
heterogeneity of expression of proteins such as involucrin will
limit their scope as markers of human tumour hypoxia.
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