17 research outputs found

    Coulomb-correlated electron number states in a transmission electron microscope beam

    Full text link
    We demonstrate the generation of Coulomb-correlated pair, triple and quadruple states of free electrons by femtosecond photoemission from a nanoscale field emitter inside a transmission electron microscope. Event-based electron spectroscopy allows a spatial and spectral characterization of the electron ensemble emitted by each laser pulse. We identify distinctive energy and momentum correlations arising from acceleration-enhanced interparticle energy exchange, revealing strong few-body Coulomb interactions at an energy scale of about two electronvolts. State-sorted beam caustics show a discrete increase in virtual source size and longitudinal source shift for few-electron states, associated with transverse momentum correlations. We observe field-controllable electron antibunching, attributed primarily to transverse Coulomb deflection. The pronounced spatial and spectral characteristics of these electron number states allow filtering schemes that control the statistical distribution of the pulse charge. In this way, the fraction of specific few-electron states can be actively suppressed or enhanced, facilitating the preparation of highly non-Poissonian electron beams for microscopy and lithography, including future heralding schemes and correlated multi-electron probing

    Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach

    Get PDF
    We introduce a broadband single-pixel spectro-temporal fluorescence detector, combining time-correlated single photon counting (TCSPC) with Fourier transform (FT) spectroscopy. A birefringent common-path interferometer (CPI) generates two time-delayed replicas of the sample’s fluorescence. Via FT of their interference signal at the detector, we obtain a two-dimensional map of the fluorescence as a function of detection wavelength and emission time, with high temporal and spectral resolution. Our instrument is remarkably simple, as it only requires the addition of a CPI to a standard single-pixel TCSPC system, and it shows a readily adjustable spectral resolution with inherently broad bandwidth coverag

    Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach

    Get PDF
    We introduce a broadband single-pixel spectro-temporal fluorescence detector, combining time-correlated single photon counting (TCSPC) with Fourier transform (FT) spectroscopy. A birefringent common-path interferometer (CPI) generates two time-delayed replicas of the sample's fluorescence. Via FT of their interference signal at the detector, we obtain a two-dimensional map of the fluorescence as a function of detection wavelength and emission time, with high temporal and spectral resolution. Our instrument is remarkably simple, as it only requires the addition of a CPI to a standard single-pixel TCSPC system, and it shows a readily adjustable spectral resolution with inherently broad bandwidth coverage

    Attosecond electron microscopy by free-electron homodyne detection

    No full text
    Time-resolved electron microscopy aims at tracking nanoscale excitations and dynamic states of matter with a temporal resolution ultimately reaching the attosecond regime. Periodically time-varying fields in an illuminated specimen cause free-electron inelastic scattering, which enables the spectroscopic imaging of near-field intensities. However, access to the evolution of nanoscale fields and structures within the light cycle requires a sensitivity to the optical phase. Here, we introduce Free-Electron Homodyne Detection (FREHD) as a universally applicable approach to electron microscopy of phase-resolved optical responses at high spatiotemporal resolution. In this scheme, a phase-controlled reference interaction serves as the local oscillator to extract arbitrary sample-induced modulations of a free-electron wave function. We demonstrate this principle through the phase-resolved imaging of plasmonic fields with few-nanometer spatial and sub-cycle temporal resolutions. Due to its sensitivity to both phase- and amplitude-modulated electron beams, FREHD measurements will be able to detect and amplify weak signals stemming from a wide variety of microscopic origins, including linear and nonlinear optical polarizations, atomic and molecular resonances and attosecond-modulated structure factors

    Observation of fluctuation-mediated picosecond nucleation of a topological phase

    No full text
    Topological states of matter exhibit fascinating physics combined with an intrinsic stability. A key challenge is the fast creation of topological phases, which requires massive reorientation of charge or spin degrees of freedom. Here we report the picosecond emergence of an extended topological phase that comprises many magnetic skyrmions. The nucleation of this phase, followed in real time via single-shot soft X-ray scattering after infrared laser excitation, is mediated by a transient topological fluctuation state. This state is enabled by the presence of a time-reversal symmetry-breaking perpendicular magnetic field and exists for less than 300 ps. Atomistic simulations indicate that the fluctuation state largely reduces the topological energy barrier and thereby enables the observed rapid and homogeneous nucleation of the skyrmion phase. These observations provide fundamental insights into the nature of topological phase transitions, and suggest a path towards ultrafast topological switching in a wide variety of materials through intermediate fluctuating states

    Observation of fluctuation-mediated picosecond nucleation of a topological phase

    No full text
    Time-resolved X-ray scattering is utilized to demonstrate an ultrafast 300 ps topological phase transition to a skyrmionic phase. This transition is enabled by the formation of a transient topological fluctuation state.Topological states of matter exhibit fascinating physics combined with an intrinsic stability. A key challenge is the fast creation of topological phases, which requires massive reorientation of charge or spin degrees of freedom. Here we report the picosecond emergence of an extended topological phase that comprises many magnetic skyrmions. The nucleation of this phase, followed in real time via single-shot soft X-ray scattering after infrared laser excitation, is mediated by a transient topological fluctuation state. This state is enabled by the presence of a time-reversal symmetry-breaking perpendicular magnetic field and exists for less than 300 ps. Atomistic simulations indicate that the fluctuation state largely reduces the topological energy barrier and thereby enables the observed rapid and homogeneous nucleation of the skyrmion phase. These observations provide fundamental insights into the nature of topological phase transitions, and suggest a path towards ultrafast topological switching in a wide variety of materials through intermediate fluctuating states

    Untersuchungen �ber den Blutumsatz bei posthepatitischen und anderen funktionellen Hyperbilirubin�mien

    No full text
    corecore