1,043 research outputs found

    Functional mapping of genotype-environment interactions for soybean growth by a semiparametric approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional mapping is a powerful approach for mapping quantitative trait loci (QTLs) that control biological processes. Functional mapping incorporates mathematical aspects of growth and development into a general QTL mapping framework and has been recently integrated with composite interval mapping to build up a so-called composite functional mapping model, aimed to separate multiple linked QTLs on the same chromosomal region.</p> <p>Results</p> <p>This article reports the principle of using composite functional mapping to estimate the effects of QTL-environment interactions on growth trajectories by parametrically modeling the tested QTL in a marker interval and nonparametrically modeling the markers outside the interval as co-factors. With this new model, we can characterize the dynamic patterns of the genetic effects of QTLs governing growth trajectories, estimate the global effects of the underlying QTLs during the course of growth and development, and test the differentiation in the shapes of QTL genotype-specific growth curves between different environments. By analyzing a real example from a soybean genome project, our model detects several QTLs that cause significant genotype-environment interactions for plant height growth processes.</p> <p>Conclusions</p> <p>The model provides a basis for deciphering the genetic architecture of trait expression adjusted to different biotic and abiotic environments for any organism.</p

    Astragaloside IV alleviates 1-deoxysphinganine-induced mitochondrial dysfunction during the progression of chronic kidney disease through p62-Nrf2 antioxidant pathway

    Full text link
    Introduction: Chronic kidney disease (CKD) can lead to significant elevation of 1-deoxysphingolipids (1-deoxySL). The increase of 1-deoxySL in turn can result in mitochondrial damage and oxidative stress, which can cause further progression of CKD.Methods: This study assessed the therapeutic effect of Astragaloside IV (AST) against 1-deoxySL-induced cytotoxicity in vitro and in rats with CKD. HK-2 cells were exposed to 1-deoxysphinganine (doxSA) or doxSA + AST. doxSA-induced mitochondrial dysfunction and oxidative stress were evaluated by immunostaining, real-time PCR, oxidative stress sensor, and transmission electron microscopy. The potential effects of AST on kidney damage were evaluated in a rat 5/6 nephrectomy (5/6 Nx) model of CKD.Results: The findings of in vitro experiments showed that doxSA induced mitochondrial damage, oxidative stress, and apoptosis. AST markedly reduced the level of mitochondrial reactive oxygen species, lowered apoptosis, and improved mitochondrial function. In addition, exposure to AST significantly induced the phosphorylation of p62 and the nuclear translocation of Nrf2 as well as its downstream anti-oxidant genes. p62 knock-down fully abolished Nrf2 nuclear translocation in cells after AST treatment. However, p62 knock-down did not affect TBHQ-induced Nrf2 nuclear translocation, indicating that AST can ameliorate doxSA-induced oxidative stress through modulation of p62 phosphorylation and Nrf2 nuclear translocation.Conclusion: The findings indicate that AST can activate Nrf2 antioxidant pathway in a p62 dependent manner. The anti-oxidative stress effect and the further mitochondrial protective effect of AST represent a promising therapeutic strategy for the progression of CKD

    Influence of interfering anions on Cu2+ and Zn2+ ions removal on chestnut outer shell-derived hydrochars in aqueous solution

    Get PDF
    Hydrothermal carbonization method was used to produce different hydrochars from chestnut outer shell at various temperatures while resolving the environmental issues of agricultural bio-waste. Hydrochars were adopted as adsorbents to remove heavy metal ions (copper and zinc ions) from aqueous solution. Hydrochar samples were characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), and Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption isotherm. An increase in the hydrothermal temperature from 160 °C to 220 °C results in higher BET surface area (18.81 m2 g-1) and the porosity of the samples. The resultant hydrochar at 220 °C exhibited a more excellent adsorption performance (8.13 mg g-1 for copper nitrate) than the other two hydrochars at low hydrothermal temperature. The current study addressed the influence of interfering anions of nitrates, sulfates and chlorides on the adsorption performance. The result shows that the hydrochar possesses larger removal efficiency for heavy metal nitrates that that of chlorides and sulfates

    The immunomodulatory peptide bursopentin (BP5) enhances proliferation and induces sIgM expression in DT40 cells

    Get PDF
    Background: In the recent past, many studies have been focused on extracts of BF and multiple biologically active factors and their effects on humoral immune system in chickens and birds. However, the mechanism of those immunomodulatory peptides on the B lineage cells proliferation and antibody production in chicken is fairly unknown. DT40 cell line, an avian leucosis virus-induced chicken pre-B cell line, expresses immunoglobulin M (IgM) isotype B cell reporter in the plasma membrane. There are many evidences suggesting that DT40 cells are best characterized as a bursal stem cell line. Because of the unique characteristics of DT40 cell line, it has been widely used to observe biological processes of pre-B lymphocyte cell within living cells. Methods: The chicken B cell line DT40 was cultured in Roswell Park Memorial Institute (RPMI) 1640 medium and cytotoxicity was studied. Also, effect of BP5 on cell proliferation and cell cycle distribution of DT40 cells was studied. Also, the effect of BP5 on sIgM mRNA expression was studied by using real-time PCR. Objectives: To investigat the effects of Bursopentin (Cys-Lys-Arg-Val-Tyr, BP5) on a chicken promyelocyte cell line DT40, assays of cell proliferation, cell cycle distribution, detection of surface immunoglobulin G (sIgM) mRNA expression and gene microarray analysis were performed. Results: The results showed that BP5 displayed concentration-dependent effects on the proliferation, cell cycle, and sIgM mRNA expression in DT40 cells. And the analysis of expression profiles identified a signature set of 3022 genes (1254 up regulated genes, 1762 down regulated genes), which clearly discriminated the BP5-treated DT40 cells from control with high certainty (P 640.02). The results of microarray analysis were confirmed by quantitative reverse transcription-polymerase chain reaction for 12 of the differentially expressed genes. Conclusion: Theses findings showed the immuno-activity effect of BP5 on B lymphocyte and indicated that BP5 treatment regulated eight signaling pathways, in which Toll-like signaling pathway was the most significant enrichment pathway

    Iron-Chelated Polydopamine Decorated Doxorubicin-Loaded Nanodevices for Reactive Oxygen Species Enhanced Cancer Combination Therapy

    Get PDF
    Combination therapy which enhances efficacy and reduces toxicity, has been increasingly applied as a promising strategy for cancer therapy. Here, a reactive oxygen species (ROS) that enhanced combination chemotherapy nanodevices was fabricated based on the Fe-chelated polydopamine (PDA) nanoparticles (NPs). The structure was characterized by dynamic light scattering-autosizer, transmission electron microscopy, energy dispersive spectroscopy, and Fourier-transform infrared (FT-IR) spectrophotometer. The in vitro drug release profile triggered by low intracellular pH indicated that the system demonstrated controlled therapeutic activity. In vitro cell uptake studies showed that doxorubicin (DOX)-loaded Fe-PDA/ folic acid (FA)- polyethylene glycol (DOX@Fe-PDA/FA-PEG) had a strong uptake capacity and can be rapidly internalized by MCF-7 cells. The in vitro experiments demonstrated that DOX@Fe-PDA/FA-PEG triggered the intracellular ROS overproduction, thereby enhancing its therapeutic effect on breast cancer. In summary, this experiment demonstrated the novel DOX-loaded composite NPs used as a potential targeted nanocarrier for breast cancer treatment, which could be a promising therapeutic strategy against breast cancer
    • …
    corecore