629 research outputs found
Myeloid sarcoma with ulnar nerve entrapment: A case report
BACKGROUND: Myeloid sarcoma (MS) is relatively rare, occurring mainly in the skin and lymph nodes, and MS invasion of the ulnar nerve is particularly unusual. The main aim of this article is to present a case of MS invading the brachial plexus, causing ulnar nerve entrapment syndrome, and to further clinical understanding of the possibility of MS invasion of peripheral nerves. CASE SUMMARY: We present the case of a 46-year-old man with a 13-year history of well-treated acute nonlymphocytic leukaemia who was admitted to the hospital after presenting with numbness and pain in his left little finger. The initial diagnosis was considered a simple case of nerve entrapment disease, with magnetic resonance imaging showing slightly abnormal left brachial plexus nerve alignment with local thickening, entrapment, and high signal on compression lipid images. Due to the severity of the ulnar nerve compression, we surgically investigated and cleared the entrapment and nerve tissue hyperplasia; however, subsequent pathological biopsy results revealed evidence of MS. The patient had significant relief from his neurological symptoms, with no postoperative complications, and was referred to the haemato-oncology department for further consultation about the primary disease. This is the first report of safe treatment of ulnar nerve entrapment from MS. It is intended to inform hand surgeons that nerve entrapment may be associated with extramedullary MS, as a rare presenting feature of the disease. CONCLUSION: MS invasion of the brachial plexus and surrounding tissues of the upper arm, resulting in ulnar nerve entrapment and degeneration with significant neurological pain and numbness in the little finger, is uncommon. Surgical treatment significantly relieved the patient’s nerve entrapment symptoms and prevented further neurological impairment. This case is reported to highlight the rare presenting features of MS
precision control of the electron longitudinal bunch shape using an emittence-exchange beam line
We report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch's horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shape is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.1162Ysciescopu
BN domains included into carbon nanotubes: role of interface
We present a density functional theory study on the shape and arrangement of
small BN domains embedded into single-walled carbon nanotubes. We show a strong
tendency for the BN hexagons formation at the simultaneous inclusion of B and N
atoms within the walls of carbon nanotubes. The work emphasizes the importance
of a correct description of the BN-C frontier. We suggest that BN-C interface
will be formed preferentially with the participation of N-C bonds. Thus, we
propose a new way of stabilizing the small BN inclusions through the formation
of nitrogen terminated borders. The comparison between the obtained results and
the available experimental data on formation of BN plackets within the single
walled carbon nanotubes is presented. The mirror situation of inclusion of
carbon plackets within single walled BN nanotubes is considered within the
proposed formalism. Finally, we show that the inclusion of small BN plackets
inside the CNTs strongly affects the electronic character of the initial
systems, opening a band gap. The nitrogen excess in the BN plackets introduces
donor states in the band gap and it might thus result in a promising way for
n-doping single walled carbon nanotubes
Person-to-Person Transmission of Severe Fever With Thrombocytopenia Syndrome Bunyavirus Through Blood Contact
Severe fever with thrombocytopenia syndrome bunyavirus is a newly discovered bunyavirus with high pathogenicity to human. The transmission model has been largely uncharacterized. Investigation on a cluster of severe fever with thrombocytopenia syndrome cases provided evidence of person-to-person transmission through blood contact to the index patient with high serum virus load
A transcriptome analysis of mitten crab testes (Eriocheir sinensis)
The identification of expressed genes involved in sexual precocity of the mitten crab (Eriocheir sinensis) is critical for a better understanding of its reproductive development. To this end, we constructed a cDNA library from the rapid developmental stage of testis of E. sinensis and sequenced 3,388 randomly picked clones. After processing, 2,990 high-quality expressed sequence tags (ESTs) were clustered into 2,415 unigenes including 307 contigs and 2,108 singlets, which were then compared to the NCBI non-redundant (nr) protein and nucleotide (nt) database for annotation with Blastx and Blastn, respectively. After further analysis, 922 unigenes were obtained with concrete annotations and 30 unigenes were found to have functions possibly related to the process of reproduction in male crabs – six transcripts relevant to spermatogenesis (especially Cyclin K and RecA homolog DMC1), two transcripts involved in nuclear protein transformation, two heat-shock protein genes, eleven transcription factor genes (a series of zinc-finger proteins), and nine cytoskeleton protein-related genes. Our results, besides providing valuable information related to crustacean reproduction, can also serve as a base for future studies of reproductive and developmental biology
Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications
To photo-catalytically degrade RhB dye using solar irradiation, CeO2 doped TiO2 nanocomposites were synthesized hydrothermally at 700 °C for 9 hrs. All emission spectra showed a prominent band centered at 442 nm that was attributed to oxygen related defects in the CeO2-TiO2 nanocrystals. Two sharp absorption bands at 1418 cm−1 and 3323 cm−1 were attributed to the deformation and stretching vibration, and bending vibration of the OH group of water physisorbed to TiO2, respectively. The photocatalytic activities of Ce-TiO2 nanocrystals were investigated through the degradation of RhB under UV and UV+ visible light over a period of 8 hrs. After 8 hrs, the most intense absorption peak at 579 nm disappeared under the highest photocatalytic activity and 99.89% of RhB degraded under solar irradiation. Visible light-activated TiO2 could be prepared from metal-ion incorporation, reduction of TiO2, non-metal doping or sensitizing of TiO2 using dyes. Studying the antibacterial activity of Ce-TiO2 nanocrystals against E. coli revealed significant activity when 10 μg was used, suggesting that it can be used as an antibacterial agent. Its effectiveness is likely related to its strong oxidation activity and superhydrophilicity. This study also discusses the mechanism of heterogeneous photocatalysis in the presence of TiO2
ABO Blood Group and the Risk of Hepatocellular Carcinoma: A Case-Control Study in Patients with Chronic Hepatitis B
BACKGROUND: Studies have observed an association between the ABO blood group and risk of certain malignancies. However, no studies of the association with hepatocellular carcinoma (HCC) risk are available. We conducted this hospital-based case-control study to examine the association with HCC in patients with chronic hepatitis B (CHB). METHODS: From January 2004 to December 2008, a total of 6275 consecutive eligible patients with chronic hepatitis B virus (HBV) infection were recruited. 1105 of them were patients with HBV-related HCC and 5,170 patients were CHB without HCC. Multivariate logistic regression models were used to investigate the association between the ABO blood group and HCC risk. RESULTS: Compared with subjects with blood type O, the adjusted odds ratio (AOR) for the association of those with blood type A and HCC risk was 1.39 [95% confidence interval (CI), 1.05-1.83] after adjusting for age, sex, type 2 diabetes, cirrhosis, hepatitis B e antigen, and HBV DNA. The associations were only statistically significant [AOR (95%CI) = 1.56(1.14-2.13)] for men, for being hepatitis B e antigen positive [AOR (95%CI) = 4.92(2.83-8.57)], for those with cirrhosis [AOR (95%CI), 1.57(1.12-2.20)], and for those with HBV DNA≤10(5)copies/mL [AOR (95%CI), 1.58(1.04-2.42)]. Stratified analysis by sex indicated that compared with those with blood type O, those with blood type B also had a significantly high risk of HCC among men, whereas, those with blood type AB or B had a low risk of HCC among women. CONCLUSIONS: The ABO blood type was associated with the risk of HCC in Chinese patients with CHB. The association was gender-related
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks
The 5G networks have the capability to provide high compatibility for the new
applications, industries, and business models. These networks can tremendously
improve the quality of life by enabling various use cases that require high
data-rate, low latency, and continuous connectivity for applications pertaining
to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of
Things (IoT). However, these applications need secure servicing as well as
resource policing for effective network formations. There have been a lot of
studies, which emphasized the security aspects of 5G networks while focusing
only on the adaptability features of these networks. However, there is a gap in
the literature which particularly needs to follow recent computing paradigms as
alternative mechanisms for the enhancement of security. To cover this, a
detailed description of the security for the 5G networks is presented in this
article along with the discussions on the evolution of osmotic and catalytic
computing-based security modules. The taxonomy on the basis of security
requirements is presented, which also includes the comparison of the existing
state-of-the-art solutions. This article also provides a security model,
"CATMOSIS", which idealizes the incorporation of security features on the basis
of catalytic and osmotic computing in the 5G networks. Finally, various
security challenges and open issues are discussed to emphasize the works to
follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure
Wireless Networks, pp. 69-102. Springer, Cham, 201
- …