27 research outputs found

    Reconstitution of huPBL-NSG Mice with Donor-Matched Dendritic Cells Enables Antigen-Specific T-cell Activation

    Get PDF
    Humanized mouse models provide a unique opportunity to study human immune cells in vivo, but traditional models have been limited to the evaluation of non-specific T-cell interactions due to the absence of antigen-presenting cells. In this study, immunodeficient NOD/SCID/IL2r-γnull (NSG) mice were engrafted with human peripheral blood lymphocytes alone or in combination with donor-matched monocyte-derived dendritic cells (DC) to determine whether antigen-specific T-cell activation could be reconstituted. Over a period of 3 weeks, transferred peripheral blood lymphocytes reconstituted the spleen and peripheral blood of recipient mice with predominantly human CD45-positive lymphocytes. Animals exhibited a relatively normal CD4/CD8 ratio (average 1.63:1) as well as reconstitution of CD3/CD56 (averaging 17.8%) and CD20 subsets (averaging 4.0%). Animals reconstituted with donor-matched CD11c+ DC also demonstrated a CD11c+ population within their spleen, representing 0.27% to 0.43% of the recovered human cells with concurrent expression of HLA-DR, CD40, and CD86. When immunized with adenovirus, either as free replication-incompetent vector (AdV) or as vector-transduced DC (DC/AdV), there was activation and expansion of AdV-specific T-cells, an increase in Th1 cytokines in serum, and skewing of T-cells toward an effector/memory phenotype. T-cells recovered from animals challenged with AdV in vivo proliferated and secreted a Th1-profile of cytokines in response to DC/AdV challenge in vitro. Our results suggest that engrafting NSG mice with a combination of lymphocytes and donor-matched DC can reconstitute antigen responsiveness and allow the in vivo assessment of human immune response to viruses, vaccines, and other immune challenges

    Pre-existing immunity against Ad vectors

    No full text

    Differential chronology of TCRADV2 gene use by α\alpha and δ\delta chains of the mouse TCR

    No full text
    International audienceThe genes coding for TCR alpha and delta chains share the same genetic locus (TCRA/D). The rules governing the utilization of a V gene with the alpha and delta chains have not been established. More specifically, it is not known whether the position of a gene within the locus influences its utilization in alpha and delta TCR. To elucidate these points, we mapped ADV2 genes in the TCRA/D locus of BALB/c mice and analyzed their utilization in TCR alpha and delta transcripts from thymi isolated from mice of different ages. Our results show that all ADV2 genes can be used by the two chains, but with strikingly different patterns. Moreover, ADV2 utilization by the alpha chain proceeds in successive concentric waves during development, suggesting a progressive regulation of gene accessibility and utilization. These results support independent control of TCRA and TCRD gene assembly

    Long-Term Specific Immune Responses Induced in Humans by a Human Immunodeficiency Virus Type 1 Lipopeptide Vaccine: Characterization of CD8(+)-T-Cell Epitopes Recognized

    No full text
    We studied the effect of booster injections and the long-term immune response after injections of an anti-human immunodeficiency virus type 1 (HIV-1) lipopeptide vaccine. This vaccine was injected alone or with QS21 adjuvant to 28 HIV-uninfected volunteers. One month later, after a fourth injection of the vaccine, B- and T-cell anti-HIV responses were detected in >85% of the vaccinated volunteers. One year after this injection, a long-term immune response was observed in >50% of the volunteers. At this point, a positive QS21 effect was observed only in the sustained B-cell and CD4(+)-T-cell responses. To better characterize the CD8(+)-T-cell response, we used a gamma interferon enzyme-linked immunospot method and a bank of 59 HIV-1 epitopes. For the six most common HLA molecules (HLA-A2, -A3, -A11, -A24, -B7 superfamily, and -B8), an average of 10 (range, 3 to 15) HIV-1 epitopes were tested. CD8(+)-T-cell responses were evaluated according to the HLA class I molecules of the volunteers. Each assessment was based on 18 HIV-1 epitopes in average. We showed that 31 HIV-1 epitopes elicited specific CD8(+)-T-cell responses after vaccination. The most frequently recognized peptides were Nef 68-76 (-B7), Nef 71-79 (-B7), Nef 84-92 (-A11), Nef 135-143 (-B7), Nef 136-145 (-A2), Nef 137-145 (-A2), Gag 259-267 (-B8), Gag 260-268 (-A2), Gag 267-274 (-A2), Gag 267-277 (-B7), and Gag 276-283 (A24). We found that CD8(+)-T-cell epitopes were induced at a higher number after a fourth injection (P < 0.05 compared to three injections), which indicates an increase in the breadth of HIV CD8(+)-T-cell epitope recognition after the boost

    Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    Get PDF
    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies
    corecore