118 research outputs found

    Ecological connectivity in Pacific deep-sea hydrothermal vent metacommunities

    Get PDF
    This work was supported by NSF grants OCE-0424953, OCE-1356738, and OCE-1829773 to L.S.M., NSF RAPID Grant OCE-1028862 to S.E.B., and Dalio Ocean Initiative and E/V Nautilus/Ocean Exploration Trust grant to S.E.B. and L.S.M. We acknowledge the sample collection permits CONAPESCA PPFE/DGOPA-010/17 and INEGI: Autorización EG0072017 associated to the Diplomatic Note number SRE 17-1087 (CTC/06727/17).Larval dispersal and connectivity between patchy, transient, deep-sea hydrothermal vent communities are important for persistence and recovery from disturbance. We investigated connectivity in vent metacommunities using the taxonomic similarity between larvae and adults to estimate the extent of exchange between communities and determine the relative roles of larval dispersal and environmental limitations (species sorting) in colonization. Connectivity at vent fields in 3 Pacific regions, Pescadero Basin, northern East Pacific Rise (EPR), and southern Mariana Trough, varied substantially and appeared to be driven by different processes. At Pescadero Basin, larval and adult taxa were similar, despite the existence of nearby (within 75 km) vent communities with different species composition, indicating limited larval transport and low connectivity. At EPR, larval and adult taxa differed significantly, despite the proximity of nearby vents with similar benthic composition, indicating substantial larval transport and potentially strong species sorting, but other factors may also explain these results. At the Mariana Trough, the larvae and adults differed significantly, indicating high larval transport but environmental limitations on colonization. We demonstrate that analysis of routinely collected samples and observations provides an informative indicator of metacommunity connectivity and insights into drivers of community assembly.Peer reviewe

    Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data

    Get PDF
    Determining the routes of introduction provides not only information about the history of an invasion process, but also information about the origin and construction of the genetic composition of the invading population. It remains difficult, however, to infer introduction routes from molecular data because of a lack of appropriate methods. We evaluate here the use of an approximate Bayesian computation (ABC) method for estimating the probabilities of introduction routes of invasive populations based on microsatellite data. We considered the crucial case of a single source population from which two invasive populations originated either serially from a single introduction event or from two independent introduction events. Using simulated datasets, we found that the method gave correct inferences and was robust to many erroneous beliefs. The method was also more efficient than traditional methods based on raw values of statistics such as assignment likelihood or pairwise F(ST). We illustrate some of the features of our ABC method, using real microsatellite datasets obtained for invasive populations of the western corn rootworm, Diabrotica virgifera virgifera. Most computations were performed with the DIYABC program (http://www1.montpellier.inra.fr/CBGP/diyabc/)

    Evolution with Stochastic Fitness and Stochastic Migration

    Get PDF
    Migration between local populations plays an important role in evolution - influencing local adaptation, speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration.We derive an exact equation for directional evolution, essentially a stochastic Price equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed - overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways, one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be incorporated into models with a single migration parameter.As has previously been shown with selection, the role of migration in evolution is determined by the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory

    Composite likelihood estimation of demographic parameters

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Most existing likelihood-based methods for fitting historical demographic models to DNA sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing large data sets or for use in situations where the underlying demographic model is complex and has many parameters. This paper considers a simple demographic model of allopatric divergence between two populations, in which one of the population is hypothesized to have experienced a founder event, or population bottleneck. A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesia

    A microsatellite study in the Łęgucki Młyn/Popielno hybrid zone reveals no genetic differentiation between two chromosome races of the common shrew (Sorex araneus)

    Get PDF
    This study investigated a chromosome hybrid zone between two chromosomal races of the common shrew (Sorex araneus). Gene flow and genetic structure of the hybrid zone, located in the northeast of Poland, were studied using seven polymorphic autosomal microsatellite loci (L9, L14, L33, L45, L67, L68, L97) and a Y-linked microsatellite locus (L8Y). Seventy-five animals (46 of the Łęgucki Młyn race and 29 of the Popielno race) from nine different localities were examined and the data were analyzed using hierarchical AMOVA and F-statistic. The studied microsatellite loci and races (divided into nine geographical populations) were characterized by observed heterozygosity (HO), expected heterozygosities within (HS), and between (HT) populations, inbreeding coefficient (FIS), fixation index (FST), and average allelic richness (A). We found that genetic structuring within and between the two chromosome races were weak and non-significant. This finding and unconstrained gene flow between the races indicates a high level of migration within the Łęgucki Młyn/Popielno hybrid zone, suggesting that evolutionarily important genetic structuring does not occur in interracial zones where races which are not genetically distinct come into contact

    Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>The population genetic structure of subterranean rodent species is strongly affected by demographic (e.g. rates of dispersal and social structure) and stochastic factors (e.g. random genetic drift among subpopulations and habitat fragmentation). In particular, gene flow estimates at different spatial scales are essential to understand genetic differentiation among populations of a species living in a highly fragmented landscape. <it>Ctenomys australis </it>(the sand dune tuco-tuco) is a territorial subterranean rodent that inhabits a relatively secure, permanently sealed burrow system, occurring in sand dune habitats on the coastal landscape in the south-east of Buenos Aires province, Argentina. Currently, this habitat is threatened by urban development and forestry and, therefore, the survival of this endemic species is at risk. Here, we assess population genetic structure and patterns of dispersal among individuals of this species at different spatial scales using 8 polymorphic microsatellite loci. Furthermore, we evaluate the relative importance of sex and habitat configuration in modulating the dispersal patterns at these geographical scales.</p> <p>Results</p> <p>Our results show that dispersal in <it>C. australis </it>is not restricted at regional spatial scales (~ 4 km). Assignment tests revealed significant population substructure within the study area, providing support for the presence of two subpopulations from three original sampling sites. Finally, male-biased dispersal was found in the Western side of our study area, but in the Eastern side no apparent philopatric pattern was found, suggesting that in a more continuous habitat males might move longer distances than females.</p> <p>Conclusions</p> <p>Overall, the assignment-based approaches were able to detect population substructure at fine geographical scales. Additionally, the maintenance of a significant genetic structure at regional (~ 4 km) and small (less than 1 km) spatial scales despite apparently moderate to high levels of gene flow between local sampling sites could not be explained simply by the linear distance among them. On the whole, our results support the hypothesis that males disperse more frequently than females; however they do not provide support for strict philopatry within females.</p

    Common garden experiments in the genomic era : new perspectives and opportunities

    Get PDF
    PdV was supported by a doctoral studentship from the French Ministère de la Recherche et de l’Enseignement Supérieur. OEG was supported by the Marine Alliance for Science and Technology for Scotland (MASTS)The study of local adaptation is rendered difficult by many evolutionary confounding phenomena (e.g. genetic drift and demographic history). When complex traits are involved in local adaptation, phenomena such as phenotypic plasticity further hamper evolutionary biologists to study the complex relationships between phenotype, genotype and environment. In this perspective paper, we suggest that the common garden experiment, specifically designed to deal with phenotypic plasticity has a clear role to play in the study of local adaptation, even (if not specifically) in the genomic era. After a quick review of some high-throughput genotyping protocols relevant in the context of a common garden, we explore how to improve common garden analyses with dense marker panel data and recent statistical methods. We then show how combining approaches from population genomics and genome-wide association studies with the settings of a common garden can yield to a very efficient, thorough and integrative study of local adaptation. Especially, evidence from genomic (e.g. genome scan) and phenotypic origins constitute independent insights into the possibility of local adaptation scenarios, and genome-wide association studies in the context of a common garden experiment allow to decipher the genetic bases of adaptive traits.PostprintPeer reviewe

    Immigration Rates in Fragmented Landscapes – Empirical Evidence for the Importance of Habitat Amount for Species Persistence

    Get PDF
    BACKGROUND: The total amount of native vegetation is an important property of fragmented landscapes and is known to exert a strong influence on population and metapopulation dynamics. As the relationship between habitat loss and local patch and gap characteristics is strongly non-linear, theoretical models predict that immigration rates should decrease dramatically at low levels of remaining native vegetation cover, leading to patch-area effects and the existence of species extinction thresholds across fragmented landscapes with different proportions of remaining native vegetation. Although empirical patterns of species distribution and richness give support to these models, direct measurements of immigration rates across fragmented landscapes are still lacking. METHODOLOGY/PRINCIPAL FINDINGS: Using the Brazilian Atlantic forest marsupial Gray Slender Mouse Opossum (Marmosops incanus) as a model species and estimating demographic parameters of populations in patches situated in three landscapes differing in the total amount of remaining forest, we tested the hypotheses that patch-area effects on population density are apparent only at intermediate levels of forest cover, and that immigration rates into forest patches are defined primarily by landscape context surrounding patches. As expected, we observed a positive patch-area effect on M. incanus density only within the landscape with intermediate forest cover. Density was independent of patch size in the most forested landscape and the species was absent from the most deforested landscape. Specifically, the mean estimated numbers of immigrants into small patches were lower in the landscape with intermediate forest cover compared to the most forested landscape. CONCLUSIONS/SIGNIFICANCE: Our results reveal the crucial importance of the total amount of remaining native vegetation for species persistence in fragmented landscapes, and specifically as to the role of variable immigration rates in providing the underlying mechanism that drives both patch-area effects and species extinction thresholds
    corecore