498 research outputs found

    Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update

    Get PDF
    This document is an update to the 2011 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and VKORC1 genotypes and warfarin dosing. Evidence from the published literature is presented for CYP2C9, VKORC1, CYP4F2, and rs12777823 genotype-guided warfarin dosing to achieve a target international normalized ratio of 2-3 when clinical genotype results are available. In addition, this updated guideline incorporates recommendations for adult and pediatric patients that are specific to continental ancestry

    Chapter 11: Challenges in and Principles for Conducting Systematic Reviews of Genetic Tests used as Predictive Indicators

    Get PDF
    In this paper, we discuss common challenges in and principles for conducting systematic reviews of genetic tests. The types of genetic tests discussed are those used to 1). determine risk or susceptibility in asymptomatic individuals; 2). reveal prognostic information to guide clinical management in those with a condition; or 3). predict response to treatments or environmental factors. This paper is not intended to provide comprehensive guidance on evaluating all genetic tests. Rather, it focuses on issues that have been of particular concern to analysts and stakeholders and on areas that are of particular relevance for the evaluation of studies of genetic tests. The key points include:The general principles that apply in evaluating genetic tests are similar to those for other prognostic or predictive tests, but there are differences in how the principles need to be applied or the degree to which certain issues are relevant.A clear definition of the clinical scenario and an analytic framework is important when evaluating any test, including genetic tests.Organizing frameworks and analytic frameworks are useful constructs for approaching the evaluation of genetic tests.In constructing an analytic framework for evaluating a genetic test, analysts should consider preanalytic, analytic, and postanalytic factors; such factors are useful when assessing analytic validity.Predictive genetic tests are generally characterized by a delayed time between testing and clinically important events.Finding published information on the analytic validity of some genetic tests may be difficult. Web sites (FDA or diagnostic companies) and gray literature may be important sources.In situations where clinical factors associated with risk are well characterized, comparative effectiveness reviews should assess the added value of using genetic testing along with known factors compared with using the known factors alone.For genome-wide association studies, reviewers should determine whether the association has been validated in multiple studies to minimize both potential confounding and publication bias. In addition, reviewers should note whether appropriate adjustments for multiple comparisons were used

    Cost effectiveness of recombinant factor VIIa for treatment of intracerebral hemorrhage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phase I/II placebo-controlled clinical trials of recombinant Factor VIIa (rFVIIa) suggested that administration of rFVIIa within 4 hours after onset of intracerebral hemorrhage (ICH) is safe, limits ICH growth, and improves outcomes. We sought to determine the cost-effectiveness of rFVIIa for acute ICH treatment, using published Phase II data. We hypothesized that rFVIIa would have a low marginal cost-effectiveness ratio (mCER) given the poor neurologic outcomes after ICH with conventional management.</p> <p>Methods</p> <p>We performed an incremental cost-effectiveness analysis from the societal perspective, considering conventional management vs. 80 ug/kg rFVIIa treatment for acute ICH cases meeting Phase II inclusion criteria. The time frame for the analysis was 1. 25 years: data from the Phase II trial was used for 90 day outcomes and rFVIIa complications – arterial thromboembolic events (ATE). We assumed no substantial cost differences in care between the two strategies except: 1) cost of rFVIIa (for an 80 mcg/kg dose in an 80 kg patient, assumed cost of 6,408);2)costofATEsideeffectsfromrFVIIa(whichalsodecreasequalityoflifeandincreasethechanceofdeath);and3)differentialmonetarycostsofoutcomesandtheirimpactonqualityoflife,includingdisposition(homevs.nursinghome),andoutpatientvs.inpatientrehabilitation.Sensitivityanalyseswereperformedtoexploreuncertaintyinparameterestimates,impactofrFVIIacost,directcostofneurologicoutcomes,probabilityofATE,andoutcomesafterATE.</p><p>Results</p><p>Inthe"basecase",treatingICHwithrFVIIadominatestheusualcarestrategybybeingmoreeffectiveandlesscostly.rFVIIamaintainedamCER<6,408); 2) cost of ATE side effects from rFVIIa (which also decrease quality of life and increase the chance of death); and 3) differential monetary costs of outcomes and their impact on quality of life, including disposition (home vs. nursing home), and outpatient vs. inpatient rehabilitation. Sensitivity analyses were performed to explore uncertainty in parameter estimates, impact of rFVIIa cost, direct cost of neurologic outcomes, probability of ATE, and outcomes after ATE.</p> <p>Results</p> <p>In the "base case", treating ICH with rFVIIa dominates the usual care strategy by being more effective and less costly. rFVIIa maintained a mCER < 50,000/QALY over a wide range of sensitivity analyses. Sensitivity analyses showed that the cost of rFVIIa must exceed 14,500,orthefrequencyofATEexceed2914,500, or the frequency of ATE exceed 29%, for the mCER to exceed 50,000/QALY. Varying the cost and/or reducing the utility of health states following ATE did not impact results.</p> <p>Conclusion</p> <p>Based on data from preliminary trials, treating selected ICH patients with rFVIIa results in lower cost and improved clinical outcomes. This potential cost-effectiveness must be considered in light of the Phase III trial results.</p

    Statistical design of personalized medicine interventions: The Clarification of Optimal Anticoagulation through Genetics (COAG) trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is currently much interest in pharmacogenetics: determining variation in genes that regulate drug effects, with a particular emphasis on improving drug safety and efficacy. The ability to determine such variation motivates the application of personalized drug therapies that utilize a patient's genetic makeup to determine a safe and effective drug at the correct dose. To ascertain whether a genotype-guided drug therapy improves patient care, a personalized medicine intervention may be evaluated within the framework of a randomized controlled trial. The statistical design of this type of personalized medicine intervention requires special considerations: the distribution of relevant allelic variants in the study population; and whether the pharmacogenetic intervention is equally effective across subpopulations defined by allelic variants.</p> <p>Methods</p> <p>The statistical design of the Clarification of Optimal Anticoagulation through Genetics (COAG) trial serves as an illustrative example of a personalized medicine intervention that uses each subject's genotype information. The COAG trial is a multicenter, double blind, randomized clinical trial that will compare two approaches to initiation of warfarin therapy: genotype-guided dosing, the initiation of warfarin therapy based on algorithms using clinical information and genotypes for polymorphisms in <it>CYP2C9 </it>and <it>VKORC1</it>; and clinical-guided dosing, the initiation of warfarin therapy based on algorithms using only clinical information.</p> <p>Results</p> <p>We determine an absolute minimum detectable difference of 5.49% based on an assumed 60% population prevalence of zero or multiple genetic variants in either <it>CYP2C9 </it>or <it>VKORC1 </it>and an assumed 15% relative effectiveness of genotype-guided warfarin initiation for those with zero or multiple genetic variants. Thus we calculate a sample size of 1238 to achieve a power level of 80% for the primary outcome. We show that reasonable departures from these assumptions may decrease statistical power to 65%.</p> <p>Conclusions</p> <p>In a personalized medicine intervention, the minimum detectable difference used in sample size calculations is not a known quantity, but rather an unknown quantity that depends on the genetic makeup of the subjects enrolled. Given the possible sensitivity of sample size and power calculations to these key assumptions, we recommend that they be monitored during the conduct of a personalized medicine intervention.</p> <p>Trial Registration</p> <p>clinicaltrials.gov: NCT00839657</p

    The cost of monitoring warfarin in patients with chronic atrial fibrillation in primary care in Sweden

    Get PDF
    BACKGROUND: Warfarin is used for the prevention of stroke in chronic atrial fibrillation. The product has a narrow therapeutic index and to obtain treatment success, patients must be maintained within a given therapeutic range (International Normalised Ratio;INR). To ensure a wise allocation of health care resources, scrutiny of costs associated with various treatments is justified. The objective of this study was to estimate the health care cost of INR controls in patients on warfarin treatment with chronic atrial fibrillation in primary care in Sweden. METHODS: Data from various sources were applied in the analysis. Resource consumption was derived from two observational studies based on electronic patient records and two Delphi-panel studies performed in two and three rounds, respectively. Unit costs were taken from official databases and primary health care centres. RESULTS: The mean cost of one INR control was SEK 550. The mean costs of INR controls during the first three months, the first year and during the second year of treatment were SEK 6,811, SEK 16,244 and SEK 8,904 respectively. CONCLUSION: INR controls of patients on warfarin treatment in primary care in Sweden represent a substantial cost to the health care provider and they are particularly costly when undertaken in home care. The cost may however be off-set by the reduced incidence of stroke

    Therapeutic Dosing of Acenocoumarol: Proposal of a Population Specific Pharmacogenetic Dosing Algorithm and Its Validation in North Indians

    Get PDF
    Objectives: To develop a population specific pharmacogenetic acenocoumarol dosing algorithm for north Indian patients and show its efficiency in dosage prediction. Methods: Multiple and linear stepwise regression analyses were used to include age, sex, height, weight, body surface area, smoking status, VKORC1-1639 G.A, CYP4F2 1347 G.A, CYP2C9*2,*3 and GGCX 12970 C.G polymorphisms as variables to generate dosing algorithms. The new dosing models were compared with already reported algorithms and also with the clinical data for various performance measures. Odds ratios for association of genotypes with drug sensitive and resistant groups were calculated. Results: The pharmacogenetic dosing algorithm generated by multiple regression analysis explains 41.4 % (p-value,0.001) of dosage variation. Validation of the new algorithm showed its predictive ability to be better than the already established algorithms based on similar variables. Its validity in our population is reflected by increased sensitivity, specificity, accuracy and decreased rates of over- and under- estimation in comparison to clinical data. The VKORC1-1639 G.A polymorphism was found to be strongly associated with acenocoumarol sensitivity according to recessive model. Conclusions: We have proposed an efficient north India specific pharmacogenetic acenocoumarol dosing algorithm whic

    Edoxaban: an update on the new oral direct factor Xa inhibitor.

    Get PDF
    Edoxaban is a once-daily oral anticoagulant that rapidly and selectively inhibits factor Xa in a concentration-dependent manner. This review describes the extensive clinical development program of edoxaban, including phase III studies in patients with non-valvular atrial fibrillation (NVAF) and symptomatic venous thromboembolism (VTE). The ENGAGE AF-TIMI 48 study (N = 21,105; mean CHADS2 score 2.8) compared edoxaban 60 mg once daily (high-dose regimen) and edoxaban 30 mg once daily (low-dose regimen) with dose-adjusted warfarin [international normalized ratio (INR) 2.0-3.0] and found that both regimens were non-inferior to warfarin in the prevention of stroke and systemic embolism in patients with NVAF. Both edoxaban regimens also provided significant reductions in the risk of hemorrhagic stroke, cardiovascular mortality, major bleeding and intracranial bleeding. The Hokusai-VTE study (N = 8,292) in patients with symptomatic VTE had a flexible treatment duration of 3-12 months and found that following initial heparin, edoxaban 60 mg once daily was non-inferior to dose-adjusted warfarin (INR 2.0-3.0) for the prevention of recurrent VTE, and also had a significantly lower risk of bleeding events. Both studies randomized patients at moderate-to-high risk of thromboembolic events and were further designed to simulate routine clinical practice as much as possible, with edoxaban dose reduction (halving dose) at randomisation or during the study if required, a frequently monitored and well-controlled warfarin group, a well-monitored transition period at study end and a flexible treatment duration in Hokusai-VTE. Given the phase III results obtained, once-daily edoxaban may soon be a key addition to the range of antithrombotic treatment options
    corecore