514 research outputs found

    Superhyperfine interactions in Ce3+ doped LiYF4 crystal: ENDOR measurements

    Full text link
    The first observation of the resolved Mims electron-nuclear double resonance (ENDOR) spectra from the nearby and remote nuclei of 19F and 7Li nuclei on impurity Ce3+ ions in LiYF4 crystal is reported. It shows that LiYF4:Ce3+ system can be exploited as a convenient matrix for performing spin manipulations and adjusting quantum computation protocols while ENDOR technique could be used for the investigation of electron-nuclear interaction with all the nuclei of the system and exploited for the electron-nuclear spin manipulations.Comment: 4 pages, 2 figures, 1 Table. Reported on Theor-2017 (Kazan, Russia) Conferenc

    TEMPOL as a polarizing agent for dynamic nuclear polarization of aqueous solutions

    Get PDF
    High-resolution proton NMR (400 MHz) and multifrequency EPR (9 - 260 GHz) characterization of aqueous solutions of the nitroxyl radical TEMPOL in the temperature range (10 - 40) °C is performed for the liquid-state DNP. Characteristic features of the in-situ DNP observations at high frequencies are presented. Optimal conditions (concentration, temperature, position of the microwave pumping, repetition/build-up time for the DNP experiments) are extracted. The results are compared with the DNP experiments, molecular dynamic calculations, saturation models, and classical models of translational and rotational diffusion. Perspectives for using TEMPOL as polarizing agent in even higher magnetic fields are discussed. © Kazan Federal University (KFU)

    Improved Randomization Tests for a Class of Single-Case Intervention Designs

    Get PDF
    Forty years ago, Eugene Edgington developed a single-case AB intervention design-and-analysis procedure based on a random determination of the point at which the B phase would start. In the present simulation studies encompassing a variety of AB-type contexts, it is demonstrated that by also randomizing the order in which the A and B phases are administered, a researcher can markedly increase the procedure’s statistical power

    An Improved Two Independent-Samples Randomization Test for Single-Case AB-Type Intervention Designs: A 20-Year Journey

    Get PDF
    Detailed is a 20-year arduous journey to develop a statistically viable two-phase (AB) single-case two independent-samples randomization test procedure. The test is designed to compare the effectiveness of two different interventions that are randomly assigned to cases. In contrast to the unsatisfactory simulation results produced by an earlier proposed randomization test, the present test consistently exhibited acceptable Type I error control under various design and effect-type configurations, while at the same time possessing adequate power to detect moderately sized intervention-difference effects. Selected issues, applications, and a multiple-baseline extension of the two-sample test are discussed

    Inhomogeneity of the intrinsic magnetic field in superconducting YBa2Cu3OX compounds as revealed by rare-earth EPR-probe

    Full text link
    X-band electron paramagnetic resonance on doped Er3+ and Yb3+ ions in Y0.99(Yb,Er)0.01Ba2Cu3OX compounds with different oxygen contents in the wide temperature range (4-120)K have been made. In the superconducting species, the strong dependencies of the linewidth and resonance line position from the sweep direction of the applied magnetic field are revealed at the temperatures significantly below TC. The possible origins of the observed hysteresis are analyzed. Applicability of the presented EPR approach to extract information about the dynamics of the flux-line lattice and critical state parameters (critical current density, magnetic penetration depth, and characteristic spatial scale of the inhomogeneity) is discussedComment: 17 pages, 5 Figures. Renewed versio

    Multi-operated HIL Test Bench for Testing Underwater Robot’s Buoyancy Variation System

    Get PDF
    Nowadays underwater gliders have become to play a vital role in ocean exploration and allow to obtain the valuable information about underwater environment. The traditional approach to the development of such vehicles requires a thorough design of each subsystem and conducting a number of expensive full scale tests for validation the accuracy of connections between these subsystems. However, present requirements to cost-effective development of underwater vehicles need the development of a reliable sampling and testing platform that allows the conducting a preliminary design of components and systems (hardware and software) of the vehicle, its simulation and finally testing and verification of missions. This paper describes the development of the HIL test bench for underwater applications. Paper discuses some advantages of HIL methodology provides a brief overview of buoyancy variation systems. In this paper we focused on hydraulic part of the developed test bench and its architecture, environment and tools. Some obtained results of several buoyancy variation systems testing are described in this paper. These results have allowed us to estimate the most efficient design of the buoyancy variation system. The main contribution of this work is to present a powerful tool for engineers to find hidden errors in underwater gliders development process and to improve the integration between glider’s subsystems by gaining insights into their operation and dynamics

    Electron Spin-Lattice Relaxation of doped Yb3+ ions in YBa2Cu3Ox

    Full text link
    The electron spin-lattice relaxation (SLR) times T1 of Yb3+‡ ions were measured from the temperature dependence of electron spin resonance linewidth in Y0.99Yb0.01Ba2Cu3Ox with different oxygen contents. Raman relaxation processes dominate the electron SLR. Derived from the temperature dependence of the SLR rate, the Debye temperature (Td) increases with the critical temperature Tc and oxygen content x. Keywords: EPR; ESR; Electron spin-lattice relaxation; Debye temperature; Critical temperatureComment: 5 Pages 4 Figure

    Crystal electric field parameters for Yb3+ ion in YbRh2Si2

    Full text link
    The tetragonal crystal electric field parameters for Yb3+ ion in YbRh2Si2 are determined from the analysis of the literature data on angle-resolved photoemission, inelastic neutron scattering and electron paramagnetic resonance.Comment: 8 pages, 3 figures, 4 table
    • …
    corecore