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Forty years ago, Eugene Edgington developed a single-case AB intervention design-and-
analysis procedure based on a random determination of the point at which the B phase 
would start. In the present simulation studies encompassing a variety of AB-type contexts, 
it is demonstrated that by also randomizing the order in which the A and B phases are 
administered, a researcher can markedly increase the procedure’s statistical power. 
 
Keywords: Single-case intervention research, design and statistical analysis, 

randomization tests, statistical power, internal validity, scientific credibility 

 

Introduction 

Single-case designs that focus on behavioral and academic interventions are 

prevalent in a variety of clinical and educational fields (see, for example, 

Kratochwill & Levin, 2014). In contrast to conventional group intervention 

designs, single-case designs typically include only one or a few units (e.g., 

individuals, small groups, classrooms) to whom the intervention is administered. 

In addition, single-case intervention designs are intensive and implemented over 

longer periods of time, with more numerous assessments of the outcome measures 

(Horner & Odom, 2014; Kratochwill et al., 2010). Single-case intervention 

designs that currently incorporate formal criteria to enhance their scientific 
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credibility (Levin, 1994) include ABAB designs, alternating treatment designs, 

and multiple-baseline designs (Kratochwill et al., 2013).  

As the methodological rigor of single-case intervention designs has evolved 

over the years (Kratochwill & Levin, 2010), so too have the formal statistical-

analysis procedures that accompany them (see, for example, Kratochwill & Levin, 

2014; and Manolov, Evans, Gast, & Perdices, 2014). Although various 

visual/graphical approaches remain an analytic staple of single-case data (e.g., 

Auerbach & Zeitlin, 2014; Kratochwill, Levin, Horner, & Swoboda, 2014; Parker, 

Vannest, & Davis, 2014), improved statistical methods have increasingly been 

considered as viable supplements to visual analysis. These improved statistical 

methods include econometric time-series analyses (e.g., McCleary & Welsh, 

1992), adapted regression- and hierarchical linear modeling procedures (e.g., 

Maggin et al., 2011; Manolov & Solanas, 2013; Moeyaert, Ferron, Beretvas, Van 

den Noortgate, & Beretvas, 2014; Shadish, Kyse, & Rindskopf, 2013), and 

nonparametric permutation and randomization tests (e.g., Edgington & Onghena, 

2007; Ferron & Levin, 2014; Heyvaert & Onghena, 2014). The last of these 

statistical approaches is the focus of the present study. 

Overview of the Present Study 

The motivation for single-case researchers to adopt a randomization test as one 

component of their analytic armament is that randomization tests provide strict 

control of the Type I error rate (i.e., the probability of concluding that phase-to-

phase differences in level, trend, variability, etc. are present when those 

differences are simply chance fluctuations) as long as: (1) the design includes 

randomization; (2) the accompanying statistical test is conducted in a manner that 

is consistent with the design frame; and (3) the test statistic is chosen without 

knowledge of the results (Edgington, 1980; Ferron & Levin, 2014). In contrast, 

demonstration of Type I error control has been elusive in studies of visual 

analysis (e.g., Ferron & Jones, 2006; Fisch, 2001; Stocks & Williams, 1995). 

Moreover, with regression and hierarchical models, Type I error control hinges on 

a relatively strong set of assumptions (Ferron, Moeyaert, Van den Noortgate, & 

Beretvas, 2014). The modeling assumptions include: (1) the error distribution is 

correctly specified (e.g., normally distributed, homogeneous variances across 

phases, and a first-order autoregressive function); (2) the baseline trajectory is 

correctly specified; (3) the baseline trajectory can be extrapolated (i.e., had the 

intervention not been implemented, the baseline trajectory would have continued, 

implying that there were no confounding effects of external events on the time 
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series); and (4) the treatment phase trajectory is correctly specified. Accordingly, 

a single-case researcher may plan a multicomponent analysis in which visual 

analysis serves as the primary analysis tool, a randomization test is employed to 

ensure that the Type I error rate is controlled, and a regression-based or 

hierarchical linear model is examined to summarize and estimate the size of the 

effect(s). 

A concern with the addition of randomization tests to the analytic plan is 

that such tests require the researcher to introduce randomization into the design, 

and if the randomization is not carefully planned it can lead to a design that falls 

short of single-case design standards (e.g., Ferron & Levin, 2014; Kazdin, 1980; 

Kratochwill et al., 2010).  As a consequence, researchers are encouraged to reflect 

carefully on the practical constraints of the context in which the study is 

conducted, on the desired design features (e.g., minimum phase lengths), and then 

tailor the randomization strategy to meet these constraints.  Restricted 

randomization schemes have been developed to ensure that: (1) the desired 

number of phases and minimum phase lengths are included in reversal designs 

(Onghena, 1992); (2) the treatment alternates quickly enough in an alternating 

treatment design (Onghena & Edgington, 1994); (3) the baseline series stabilizes 

prior to commencement of the intervention phase (Ferron & Ware, 1994); (4) the 

intervention start points are staggered by a minimum amount of time in multiple-

baseline designs (Koehler & Levin, 1998), and (5) researchers are able to obtain 

visually acceptable patterns by extending phases in multiple-baseline designs 

(Ferron & Jones, 2006) and reversal designs (Ferron & Levin, 2014). 

The present Monte Carlo simulation study employs nonparametric 

randomization tests in the company of a recently proposed methodological 

addition that greatly enhances the internal validity of AB and ABAB single-case 

intervention designs (Ferron & Levin, 2014; Levin, Evmenova, & Gafurov, 2014). 

In these designs, A typically represents a baseline, control, or standard treatment 

phase containing repeated outcome measurements and B represents an 

intervention, experimental, or new treatment phase also containing repeated 

outcome measurements. Here we examine the methodological addition’s effect on 

the statistical conclusion validity (manifested by both Type I error control and 

increased statistical power) of randomization tests in single-case AB and ABAB 

designs, in both their single-case (N = 1) and multiple-case (N > 1) forms. In the 

following section, we first describe the methodological addition that enhances the 

internal validity (scientific credibility) of single-case intervention research and 

then outline how the addition is incorporated into a randomization test to improve 

the test’s statistical conclusion validity. Our decision to start our investigations 



LEVIN ET AL. 

5 

with a single-participant (N = 1) AB design was not because we are advocating 

for the use of such a design, but because it provides the simplest point to begin 

study of the impact of the methodological addition.  Once we have established the 

effects on statistical conclusion validity in the simplest situation, we will 

progressively add complexities to strengthen the design, building to the multiple-

participant (N > 1) ABAB design. 

Edgington’s (1975) Random Intervention Start-Point Model 

Of four different types of randomization that can be incorporated into 

randomization in single-case AB experimental studies (specifically, within-case 

phase randomization, between-case intervention randomization, case 

randomization, and intervention start-point randomization (see Ferron & Levin, 

2014), the last, highly creative, type was originally developed by Edgington 

(1975) and requires that the researcher: (1) randomly select an intervention start 

point from two or more that had been previously deemed acceptable; and then (2) 

assign to the case the start point that was actually selected. Although not applied 

in the conventional treatment randomization manner, this unique form of 

randomization increases a single-case study’s internal validity and, when 

accompanied by the statistical test described in the following paragraph, it can 

increase the study’s statistical conclusion validity as well. Moreover, this 

randomized intervention start-point approach can function to provide a true (i.e., 

scientifically credible) experimental comparison of two or more intervention (or 

intervention and control) conditions based on either one case or multiple cases per 

condition (for examples and discussion, see Ferron & Levin, 2014; Koehler & 

Levin, 1998; Levin, Lall, & Kratochwill, 2011; Levin & Wampold, 1999; and 

Marascuilo & Busk, 1988). 

With the randomized intervention start-point model, a randomization 

statistical test is conducted on the difference between the means of all B and all A 

series outcomes for each of the intervention start-point divisions (or transitions) 

that could have resulted from the random-selection process (see also Edgington & 

Onghena, 2007). [Moreover, any other summary measure of relevance to the 

researcher’s hypothesis about the nature of change from Phase A to Phase B (e.g., 

change in the series’ medians, slopes, variances) can also be the focus of a 

randomization-test analysis.] 

With the resulting set of mean differences yielding a randomization 

distribution, the mean difference associated with the actual intervention start point 

is examined to see where it falls within the set. The probability of obtaining a 
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mean difference as extreme as or more extreme than the actual mean difference 

represents the unlikelihood of the outcome. Either signed or unsigned mean 

differences are considered for one- and two-tailed hypothesis tests, respectively. 

For example, for an AB design with one case, 25 outcome-assessment periods, 

and 20 potential intervention start points, if the actual start point were found to 

produce the largest mean difference (in the predicted direction) between the B and 

A series outcomes, then the one-tailed significance probability associated with 

that event would be given by p = 1/20 = .05. For a two-tailed test, as or more 

extreme opposite-sign mean differences would also need to be taken into account. 

For instance, if there were a mean difference equal in magnitude but opposite in 

sign to the one just indicated for the actual intervention start point, then the two-

tailed significance probability would be 2/20 = .10. 

In Edgington’s (1975) random intervention start-point model for a one-case 

AB design, it is assumed that the A phase consists of a baseline series, the B 

phase consists of an intervention series, and that the former logically precedes the 

latter. With those assumptions, the number of possible outcomes (B−A mean 

differences) in the randomization distribution is k, the number of potential 

intervention start points. Accordingly, with one case, 30 total observations, and 

k = 10 potential intervention start points, if the actual B−A mean difference 

produced were the largest of the 10 and in the predicted direction, then the one-

tailed significance probability of that outcome would be p = 1/10 = .10. In order 

to achieve statistical significance at a traditional α = .05 level (one-tailed), one 

would need to include at least k = 20 potential intervention start points in the 

randomization distribution (i.e., so that if the most extreme mean difference in the 

predicted direction were obtained, then p would equal 1/20 = .05). To achieve 

statistical significance with α = .05 via a two-tailed test, a longer series with a 

minimum of k = 40 potential intervention start points would be required (i.e., so 

that p = 2/40 = .05 is possible). 

Randomized Order (Dual Randomization) Addition to the Edgington 

Model 

Edgington (1975) proposed his random intervention start-point design-and-

analysis procedure 40 years ago. It has been incorporated into a variety of single-

case intervention designs (e.g., Koehler & Levin, 1998; Levin & Wampold, 1999; 

Marascuilo & Busk, 1988; Onghena, 1992) and is being implemented in its 

original form to this day. However, it will be shown here that an addition to the 

procedure (referred to here as a modified procedure), which enhances its internal 
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validity by eliminating bias due AB phase-order effects, is possible and one that is 

applicable in a number of single-case intervention investigations. To illustrate, 

suppose that instead of A representing a baseline or control phase, it represents 

one type of experimental intervention―say, a behavioral intervention for 

combatting a particular phobia. In contrast, B might represent a cognitive 

intervention targeting the same phobia. Within that context, the case receives both 

interventions. To have a legitimate (unconfounded) comparison of Intervention A 

and Intervention B, it is imperative that the order in which the two interventions 

are administered to the case is randomly (rather than arbitrarily) determined. The 

preceding statement applies whether the investigation includes only one case or 

multiple cases (although in multiple-case situations, systematic counterbalancing 

of intervention orders across cases might be implemented to achieve the same 

goal). 

In addition, it is worth noting that A and B need not refer only to two 

competing interventions. Rather, suppose that A represents a baseline, standard, 

or control condition and B an intervention condition. As has been suggested 

previously (e.g., Kratochwill & Levin, 2010), further suppose that prior to the 

commencement of the actual experiment, a mandatory baseline (or 

adaptation/warm-up) phase (A') is required of all cases. With A' included, it 

would then be possible, appropriate, and presumably acceptable to researchers to 

begin the experiment proper by randomizing each case’s subsequent A and B 

phases (i.e., an A randomly selected to be first means that the case remains in the 

baseline condition, followed by the B intervention condition; and a B randomly 

selected to be first means that the case begins with the intervention condition, 

followed by the A baseline condition). Accordingly, the modified order-

randomization procedure is applicable in either one- or two-intervention AB 

designs, with the prospect of improving both design (internal validity) and 

analysis (statistical-conclusion validity) of two-phase single-case intervention 

studies. 

With intervention-order randomization built into the just-discussed one-case 

example based on 30 total observations and 10 potential intervention start points, 

in addition to the intervention start points associated with the conventional AB 

order of intervention administration, one would also need to consider the 

possibility that Intervention B had been randomly selected to be administered first. 

If that had happened, there would be a corresponding 10 potential intervention 

start points for the BA order of intervention administration, resulting in a total of 

k = 20 potential start-point outcomes that would be included in the complete 

randomization distribution.   
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Multiple-Case Extension of the Modified Edgington Model 

As we will show, the order-randomization procedure applies to multiple-case 

(replicated) AB situations as well, increasing the total number of possible 

randomization-distribution outcomes by a factor of 2N, where N represents the 

number of cases. Specifically, with N cases and one of ki potential intervention 

start points randomly selected for each case, with Marascuilo and Busk’s (1988) 

multiple-case extension of Edgington’s (1975) single fixed-order intervention 

start-point model, a total of 
1

N

i i
k

  randomization-distribution outcomes are 

possible, and in the special case for which all ki are equal to k, this quantity 

reduces to kN. With the addition of an order-randomization process to create the 

present dual randomization model, the total number of possible randomization-

distribution outcomes increases to 
1

2
N N

i i
k


  and kN × 2N = (2k)N for the general 

and special-case situations, respectively. 

 

Hypothetical example    We illustrate the present random-order 

randomization-test procedure for a replicated single-case AB design by means of 

a hypothetical example. Suppose that a language researcher wishes to improve the 

baseline vocalization output (A phase) of two low word-producing children 

through some type of positive-reinforcement intervention (B phase). For the 

random-order version of the present example we assume that a mandatory A' 

baseline (warm-up) phase was initially administered, followed by a random 

determination of whether the first phase of the actual study would be a baseline 

(A) or an intervention (B) phase, thereby producing either an A'AB or A'BA 

design. Although in comparison to a traditional fixed-order AB design, this type 

of randomized AB design is more scientifically credible (especially when 

replicated across cases), the latter design was not considered in the current What 

Works Clearinghouse (WWC) single-case intervention design Standards 

(Kratochwill et al., 2010). Our hypothetical study is presented simply to illustrate 

both the original (Edgington, 1975) fixed-order and the present random-order 

randomization-test procedures, without taking into account the study’s internal-

validity characteristics. Consideration of internal-validity issues is included later 

in the Discussion section. 

In this hypothetical study, the number of single-word vocalizations by each 

child during a 5-minute play period is recorded, with Child 1 observed in each of 

25 daily sessions and Child 2 observed in each of 15 daily sessions, and where 

both children must be observed in at least 3 A sessions and 3 B sessions (thereby 

resulting in 20 and 10 potential intervention transition points for Child 1 and 
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Child 2, respectively). In addition, because the researcher wishes to randomize the 

intervention order (AB or BA) for each child, three preliminary five-minute A' 

warm-up sessions are provided prior to the start of the children’s actual 

experimental sessions. An initial coin toss determines that Child 1 will be 

administered an AB intervention order, with the 20 potential intervention 

transition points specified from between the 4th and 23rd sessions inclusive and the 

randomly selected actual intervention transition point occurring just prior to 

Session 10. For Child 2, a BA intervention order results from a second coin flip, 

with the 10 potential intervention transitions specified from between the 4th and 

13th sessions inclusive and an actual randomly selected intervention transition 

point just prior to the 7th observation. 

The A- and B-phase observations are presented in Table 1. Given the 

present random-order AB intervention start-point randomization model, the data 

were analyzed with Gafurov and Levin’s (2014) single-case ExPRT (Excel® 

Package of Randomization Tests) package―see Levin et al. (2014) for complete 

information about ExPRT. In Table 2 are presented the B−A mean differences 

associated with each of the potential intervention transition points for the two 

children.  

The first Table 2 entry of 2.41 for Child 1, which corresponds to an A-to-B 

intervention transition point just prior to Observation 4, was calculated by taking 

the average of Child 1’s Observations 4 through 25 (mean B phase = 6.41) minus 

the average of that child’s Observations 1 through 3 (mean A phase = 4.00). The 

same process was followed for each of the subsequent 19 potential intervention 

points for Child 1, which ends with the average of that child’s Observations 23 

through 25 (mean B phase = 8.00) minus the average of that child’s Observations 

1 through 22 (mean A phase = 5.86), resulting in Child 1’s final mean difference 

of 2.14 in Table 2. Next, and as indicated in Table 2’s Footnote a, 20 additional 

mean differences were calculated for Child 1 under the assumption that instead of 

an A−B intervention order, the reverse B−A order had been selected. Under that 

assumption, the first mean difference for Child 1 would be 4.00 − 6.41 = −2.41, 

which is exactly the same numerically but opposite in sign to the previously 

calculated child’s first value in Table 2. The same is true for all of Child 1’s 

calculated reverse-order values, including the 20th one, which is now −2.14. The 

same process applied to Child 2’s data yields the 10 actual B−A mean differences 

presented in Table 2 (i.e.,  6.00 − 4.92 = 1.08 for the first one), as well as 10 

reverse-order and opposite-sign A−B mean differences. 
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Table 1. Hypothetical data for Child 1’s 25-observation series, with a randomly selected 

AB intervention order, 20 potential intervention transition points (between Observations 4 
and 23 Inclusive), and a randomly selected actual intervention transition point just prior to 
Observation 10; and for Child 2’s 15-observation series, with a randomly selected BA 
intervention order, 10 potential intervention transition points (between Observations 4 and 
13 Inclusive), and a randomly selected actual intervention transition point just prior to 
Observation 7 
 

Child 1 Child 2 

Observation Phase Vocalizations Observation Phase Vocalizations 

1 A 4 1 B 6 

2 A 3 2 B 5 

3 A 5 3 B 7 

4 A 5 4 B 5 

5 A 2 5 B 6 

6 A 5 6 B 5 

7 A 3 7* A 4 

8 A 4 8 A 5 

9 A 4 9 A 3 

10* B 5 10 A 5 

11 B 6 11 A 4 

12 B 7 12 A 5 

13 B 6 13 A 6 

14 B 7 14 A 5 

15 B 8 15 A 6 

16 B 7 
   

17 B 9 
   

18 B 8 
   

19 B 6 
   

20 B 8 
   

21 B 9 
   

22 B 8 
   

23 B 7 
   

24 B 9 
   

25 B 8       
 

*Actual intervention transition point. 
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Table 2. The B−A mean difference associated with: (1) each of Child 1’s 20 potential 

intervention transition points (O4-O23) for a randomly selected AB intervention order; and 
(2) each of Child 2’s 10 potential intervention transition points (O4-O13) for a randomly 
selected BA intervention order 
 

  Child 1 Child 2 

Potential Intervention Point B-A Mean Differencea B-A Mean Differenceb 

O4 2.41 1.08 

O5 2.23 0.84 

O6 2.90 1.00 

O7 2.79 0.89* 

O8 3.14 0.55 

O9 3.30 0.52 

O10 3.49* -0.06 

O11 3.53 -0.10 

O12 3.46 -0.50 

O13 3.28 -0.67 

O14 3.29   

O15 3.19   

O16 2.97   

O17 2.94   

O18 2.58   

O19 2.41   

O20 2.69   

O21 2.60   

O22 2.24   

O23 2.14   
 

*Mean difference associated with the actual intervention transition point. a The 20 A−B mean differences are 
also calculated and added to these to form a 40-outcome randomization distribution; all of the A−B mean 

differences are the same as the corresponding B-A mean differences given here but opposite in sign. b The 10 
A−B mean differences are also calculated and added to these to form a 20-outcome randomization distribution; 

all of the mean A−B differences are the same as the corresponding mean B−A differences given here but 

opposite in sign. 

 
 

The resulting joint randomization distribution therefore contains 40 mean 

differences for Child 1 combined with 20 mean differences for Child 2, for a total 

of 40 × 20 = 800 averaged mean differences (i.e., Child 1’s 1st mean difference 

averaged with Child 2’s 1st mean difference, Child 1’s 1st mean difference 

averaged with Child 2’s 2nd mean difference, all the way up to and including 

Child 1’s 40th mean difference averaged with Child 2’s 20th mean difference). 

When that is done by the ExPRT program, it is found that the actual joint mean 
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difference that was obtained in the study is 2.19, which is Child 1’s mean 

difference associated with that child’s actual intervention transition point of O10 

(3.49) averaged with Child 2’s actual intervention transition-point mean 

difference of O7 (.89). Of the 800 outcomes in the joint randomization distribution, 

a value of 2.19 is the 10th highest, which results in a one-tailed significance 

probability of p = 10/800 = .0125. For this example, had a one-tailed Type I error 

probability (α) of .05 been selected, it could be concluded that the positive-

reinforcement intervention (B) distribution values differed statistically from those 

in the baseline distribution (A), with the additional inference that the former 

distribution’s values were higher. We note that both here and in the various 

simulations conducted in the present series of investigations, one-tailed tests are 

conducted because it is assumed that [especially in single-case A (baseline) − B 

(intervention) research] the researcher has a clear and defensible rationale for the 

direction of change that is associated with the intervention.  

Insofar as randomization tests are not tailored to test for the equality of two 

populations’ specific parameters, all that can be tested for is the equality of the 

two population distributions per se. For the present randomization test, the test 

statistic involves sample-mean differences and because that is the test that 

produced a statistically significant result here (favoring the intervention phase 

over the baseline phase), a reasonable inference is that there was an A- to B-phase 

upward shift in the children’s level of responding. 

Advantages of the Order Randomization Modification 

The present order-randomization approach enhances the internal validity of a 

single-case AB design by virtue of its removing bias stemming from intervention-

order effects. As an important byproduct, the approach also elevates the status of 

the basic AB single-case intervention design from a WWC Standards “acceptable 

design” standpoint (Kratochwill et al., 2010), particularly when replicated across 

independent participants at different points in time. According to the WWC 

Standards, two-phase A (Baseline) – B (Intervention) designs are not 

scientifically credible (and therefore unacceptable) because they suffer from too 

many potential sources of internal invalidity. For extended discussion of 

acceptable designs, see Kratochwill, et al. (2010, 2013).  

Including outcomes from both intervention-administration orders in the 

randomization distribution also provides fundamental pragmatic advantages for 

single-case intervention researchers. First, with the original Edgington (1975) 

model, a researcher would need to designate 20 potential intervention start points 
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(based on at least 21 total observations) to produce a randomization test that is 

capable of detecting an intervention effect with a one-tailed Type I error 

probability less than or equal to .05. With the present procedure, a researcher 

would need to designate only half as many potential intervention start points (here, 

10, based on a total of 11 total observations, resulting in 20 possible outcomes) to 

detect an intervention effect. A related reason why the present procedure has 

practical importance for single-case intervention researchers is that (and as will be 

demonstrated here) relative to the original Edgington (1975) model, the modified 

approach may produce statistical-power advantages as well. Thus, for no more 

expense than a coin to flip, a researcher might reap both methodological and 

statistical benefits by adopting the present dual-randomization procedure rather 

than either the original single-randomization Edgington model or Marascuilo and 

Busk’s (1988) multiple-case extension of it. 

Relationship to Traditional Experimental Designs and Statistical 

Analyses 

Although unrecognized at the time that the present order-randomization approach 

was initially conceptualized, its logic maps directly onto a statistical procedure in 

the traditional group randomized treatment-design literature. In particular, 

consider a randomized two-treatment correlated-samples (or within-subjects) 

design based on N participants, to which a nonparametric randomization test is 

applied as an appropriate alternative in (especially small-sample) situations where 

the normality assumption of a correlated-samples t test (or a one-sample repeated-

measures analysis) is questionable.  

To illustrate that situation, we revisit an example that was recently presented 

by Ferron and Levin (2014, p. 174). Suppose that in a sample of N = 8 adults, 

each participant is administered two different fear-reducing treatments, A (a 

behavioral treatment) and B (a cognitive intervention), with the former posited to 

be more effective than the latter. It is determined in advance that the equal-

effectiveness hypothesis will be tested with a randomization test based on a one-

tailed α of .05. To produce a scientifically credible experiment, the order in which 

the two treatments are administered is again randomly determined on a case-by-

case basis by means of coin flips: say, heads represents an AB order and tails a 

BA order. On the basis of that process, let us suppose that 5 participants ended up 

in the AB condition and 3 in the BA condition. Following the administration of 

each treatment, participants’ fear responses are assessed on a 7-point Likert scale, 

with higher numbers indicating greater fear. With the measure of interest defined 
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as the difference between each participant’s B and A ratings (i.e., B−A), the 

following outcomes were obtained for the 8 participants: 

 

+3.0    +3.5    −1.5   +2.0    +4.5    +3.5    −2.0    +4.0 

 

The observed test statistic is given by the average of these differences, which is 

equal to +17/8 = 2.125. A randomization distribution is created from the 

2N = 28 = 256 possible ways in each + and − signs could be attached to these 8 

numerical values. For example, the first outcome in the randomization distribution 

(with all + signs) would be: 

 

+3.0    +3.5    +1.5   +2.0    +4.5    +3.5    +2.0    +4.0 

 

yielding a mean difference of +24/8 = 3.000, and the last (with all minus signs) 

would be: 

 

−3.0     −3.5     −1.5    −2.0     −4.5     −3.5     −2.0    −4.0 

 

yielding a mean difference of −24/8 = −3.000. The remaining 254 possible 

outcomes would fall somewhere between these two extremes. 

The actually obtained mean difference of +2.125 appears to be on the higher 

side of this distribution. In fact, it turns out to be among the 9 highest possible 

outcomes (specifically, an outcome that is exceeded by only 5 outcomes and that 

is tied with 3 others). Accordingly, a one-tailed test of the hypothesis that the A 

and B treatments have equal distributions would be associated with a p-value 

(consistent with the alternative hypothesis that Treatment B is producing higher 

fear ratings than Treatment A) that is equal to 9/256 = .035. Because this value is 

less than the predetermined α of .05, it would be concluded that the actually 

obtained mean difference of +2.125 is statistically significant.  

Note that for this conventional-group design and associated randomization 

test, the all-possible assignment of + and – signs to the 8 absolute B−A 

differences corresponds exactly to the logic and operationalization of the single-

case AB order-randomization procedure to be investigated here. In particular, the 

procedure incorporates two separate forms of randomization for each of the N 

participating cases, Edgington’s intervention start-point randomization and AB 

order randomization. In the simplest situation where there is only one potential 

intervention start point for each case (as in the just-presented N = 8 example), the 

total number of possible start-point randomizations is equal to kN = 18 = 1. The 
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present order-randomization procedure involves each of the 8 participants 

contributing two differences (i.e., B−A and A−B) to the randomization 

distribution, resulting in 2N = 28 = 256 joint randomization outcomes, and which, 

according to the previously given special-case dual-randomization formula, 

kN × 2N, yields a total of 1 × 28 = 256 possible randomization outcomes. This total 

is identical to the number of possible randomization-distribution outcomes 

associated with the just-presented example. It is instructive to note that the total 

number of possible randomization outcomes associated with order randomization 

can be alternatively expressed as  0

N N

x x , where N = the number of cases and 

x = the number of positive B−A differences that could be associated with the N 

actual outcomes. For the present example, this expression is equal to  
8 8

0x x , 

or 

 

 

                 
8 8 8 8 8 8 8 8 8

0 1 2 3 4 5 6 7 8

1 8 2 8 5 6 7 0 5 6 2 8 8 1

2 5 6

       

        



  

 

Thus, when there is only one potential intervention point for each case and 

the AB design includes multiple observations, the present randomized-order test 

based on the difference between the A- and B-phase means maintains the same 

correspondence with a conventional-group correlated-samples randomization test 

as was shown here. Implicit in the conventional correlated-samples test is that 

with random assignment to treatment conditions, outcomes representing both 

orders of treatment administration need to be considered in the randomization test 

distribution. As such, the present order-randomization procedure is not really a 

special case at all, but rather the single-case analog of a correlated-samples 

randomization t test.  

Focus of the Present Investigations 

The focus of our series of simulation investigations was to examine the Type I 

error and statistical power characteristics of the dual-randomization modification 

(intervention start-point plus intervention order) relative to those of Edgington’s 

(1975) and Marascuilo and Busk’s (1988) original single-randomization 

(intervention start-point) test procedures. In this study we present randomized 

intervention-order findings not just for a basic two-phase AB design, but also for 

a randomized pairs variation of that design (Levin & Wampold, 1999), a single-
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case adaptation of the conventional-group crossover design, and Onghena’s 

(1992) four-phase ABAB design. 

Investigations 1-3: Randomized Intervention Order for the 
Basic AB Design 

Investigation 1 

Method In Investigation 1, the focus was on 30-observation designs for a 

single participant (i.e., N = 1), where the intervention start point was randomly 

selected from the middle 20 observations. The series length of 30 was chosen for 

initial examination because: (1) 20 start points is the minimum number needed to 

obtain a statistically significant result with a one-tailed α of .05 for an AB 

randomized start-point design with one case; and (2) the WWC Standards require 

a minimum of five observations in each phase (Kratochwill et al., 2010, 2013).   

Data were generated using SAS IML (SAS, 2013), where the time-series 

data were obtained by adding an error vector to an effect vector. The error vector 

was created such that it was distributed normally and had an autocorrelation of 0 

or .3 by using SAS’s autoregressive moving-average simulation function 

(ARMASIM). The autocorrelation values of 0 and .3 were motivated by a survey 

of actual single-case studies where it was reported that the average autocorrelation 

was .2, after adjusting for bias in the estimates (Shadish & Sullivan, 2011). To 

obtain simulated errors based on an autocorrelation of .3, the autoregressive 

parameter matrix was set to {1 −.3}, the moving average parameter matrix was set 

to {1 0}, and a standard deviation of the independent portion of the error was set 

to 1.0 (for details on the simulation algorithm see Woodfield, 1988). The effect 

vector was coded to have values of 0 for all baseline observations, and values of d 

for all intervention phase observations, and thus d corresponds to the mean shift 

between intervention and baseline observations in standard deviation units, (μB – 

μA)/σ (see Busk & Serlin, 2005), where the standard deviation is based on the 

independent portion of the within-case error term (see, for example, Levin, Ferron, 

& Kratochwill, 2012) (for an alternative operationalization of d that corresponds 

mathematically to a conventional groups effect-size measure, see Shadish et al. 

(2014)). The value of d was varied to examine the one-tailed Type I error 

probability for d = 0 and the powers for ds ranging from .5 to 5 in increments 

of .5.  For reference, if the d used for the present data generation is estimated for 

each of the 200 Phase A-to-Phase B contrasts examined in the survey of single-

case interventions reported by Parker and Vannest (2009), the empirically 
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observed values of d (assuming no autocorrelation for simplicity) for the 10th, 50th, 

and 90th percentile ranks are estimated to be 0.46, 1.70, and 3.88, respectively.  

By crossing each design (single, dual), with each level of autocorrelation 

(r = 0, .3), and each effect size (d = 0 to 5, in increments of .5), 2 × 2 × 11 = 44 

conditions were obtained, and for each of these conditions the data for 10,000 

studies were simulated. The data for each simulated data set were analyzed using 

a randomization test in which the obtained test statistic (MB – MA) was compared 

to the complete randomization distribution.  The proportion of simulated studies 

in which the randomization test led to a one-tailed p-value of .05 or less was 

determined to estimate the rejection rate (Type I error or power) of the 

randomization test for each of the 44 experimental conditions. 
 
 

 
 
Figure 1. Investigation 1: Comparison (α = .05, one-tailed) of randomization tests for a 

one-case (N = 1) AB randomized intervention start-point design (Single) and the 
randomized intervention start-point plus randomized intervention- order design (Dual), 
where the start point was randomly selected between the 6 th through the 25th 
observations inclusive in a 30-observations study. The rejection rate of the null 
hypothesis is shown as a function of the effect size and level of autocorrelation. 
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Results Results are shown in Figure 1 for Edgington’s (1975) original 

procedure (single) and for the present randomized-order modification (dual). As 

may be seen in that figure, when the effect size is 0, all situations are associated 

with empirical powers (which, for d = 0 are equivalent to Type I error 

probabilities) that correspond to their nominal .05 values. Not surprisingly, based 

on previous findings (e.g., Ferron & Sentovich, 2002; Ferron & Ware, 1995; 

Levin et al., 2011), it may also be seen that for ds > 0 power is uniformly higher 

for r = 0 than for r = .3. As the effect size increases, so does power, although 

more rapidly for the dual-randomization procedure than for its single-

randomization counterpart. The largest power differences, favoring the former, 

reach .21 in the r = 0 situation for ds of 1.5 and 2.0; and in the r = .3 situation the 

largest power difference is .18 for a d of 2.5. 

Investigation 2 

Method In Investigation 2, series length (i.e., the number of observations) 

was systematically varied for a single-participant (N = 1) design, while holding 

the effect size constant at d = 2. A d of 2 was chosen because it is a large enough 

effect to typically be of interest to a single-case researcher. Yet, a d of 2 is small 

enough that it is not readily detectable (power < .80) in a single-participant 30-

observations design when there is a moderate autocorrelation of .30 and applying 

either the single- or dual-randomization approach (as may be seen in Figure 1, 

where powers are .50 and .67, respectively). The simulation methods paralleled 

those of the initial investigation (including a one-tailed α of .05), but d was held 

constant at 2.0 for all conditions and series length was varied from 20 to 150 in 

increments of 10. The number of potential intervention start points was always the 

series length minus 10 to ensure at least five observations in the baseline and 

intervention phases. 

 

Results Results for this set of simulations are provided in Figure 2, where 

with an autocorrelation of .30, power of at least .80 is attained for the dual-

randomization approach with 60 observations (power = .81), in contrast to the 

single-randomization design where .80 power is not quite attained even with 150 

observations (power = .79). For 30 to 100 observations, the power difference 

between the two randomization schemes (favoring dual) ranges from .13 to .31 

when the autocorrelation is 0 and from .17 to .30 when the autocorrelation is .30.  
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Figure 2. Investigation 2: Comparison (α = .05, one-tailed) of randomization tests for a 

one-case (N = 1) AB randomized intervention start-point design (Single) and the 
randomized intervention start-point plus randomized intervention-order design (Dual). 
The rejection rate of the null hypothesis is shown as a function of series length and level 
of autocorrelation. The effect size is 2.0 and the number of potential intervention start 
points (x) is equal to the series length minus 10 and encompasses the middle x 
observations. 

 

 
 

It should be noted that the power is 0 for the single-randomization scheme with 20 

observations because there are only 10 possible intervention start points and thus 

statistical significance cannot be obtained at the one-tailed .05 level. In addition, 

the undulation in the power curves for the single-randomization approach makes 

sense when one recognizes that: (1) for a series length of 30, statistical 

significance with α = .05 can be attained only for the most extreme of the 20 

permutations; and (2) with a series length of 40, statistical significance can again 

be attained only for the most extreme permutation, but now there are 30 

permutations and so the most extreme is somewhat more difficult to achieve. 

Although power drops for the 40-observation series, with a series length of 50, 

statistical significance can be attained for either of the two most extreme 

permutations and thus power jumps back up again.  
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Investigation 3a 

Method In Investigation 3a, the effect of multiple-case replications (i.e., 

N > 1) on the power of the single- and dual-randomization procedures was 

examined. More specifically, a design with 15 observations and 5 potential 

intervention start points, randomly selected from observations 6 through 10, was 

examined with 2, 3, 4, 5, and 6 participants based on a one-tailed α of .05. For the 

single-randomization approach, 7 and 8 participants were also included. These 

numbers of participants seemed reasonable given the survey by Shadish and 

Sullivan (2011), in which it was found that the number of cases in single-case 

studies averaged 3.64, with a range of 1 to 13. In the present study, effect sizes 

varied from 0 to 3 in increments of .5 and the autocorrelation was set either to 0 

or .3. 
 
 

 
 
Figure 3. Investigation 3a: Comparison (α = .05, one-tailed) of randomization tests for the 

Single and Dual basic AB randomized designs replicated across N cases. The rejection 
rate of the null hypothesis is shown as a function of effect size and N, for a 15-
observations design with 5 potential intervention start points designated from between 
the 6th and 10th observations inclusive and an autocorrelation of 0. 
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Results Results from simulations where the autocorrelation is 0 are shown 

in Figure 3, whereas those for an autocorrelation of .3 are shown in Figure 4. In 

both figures, it may be seen that for all sample sizes the empirical Type I error 

probabilities are well controlled at .05 for both the single- and dual-randomization 

approaches. The important thing to note is that in both figures, for all effect sizes 

the dual approach based on as few as N = 3 participants has associated power that 

is greater than or equivalent to the single approach based on N = 8 participants. 

For example, in Figure 4 it may be seen that with an autocorrelation of .3, N = 3 

dual- and N = 8 single-randomization powers are .66 and .61, respectively, for an 

effect size of 1.0; and they are .90 and .89, respectively, for an effect size of 1.5. 
 
 

 
 
Figure 4. Investigation 3a: Comparison (α = .05, one-tailed) of randomization tests for the 

Single and Dual basic AB randomized designs replicated across N cases. The rejection 
rate of the null hypothesis is shown as a function of effect size and N, for a 15 
observations design with 5 potential intervention start points designated from between 
the 6th and 10th observations inclusive and an autocorrelation of .3. 
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Investigation 3b 

Method  In this investigation, the simulations of Investigation 3a were 

replicated with the sole difference being that a two-tailed test with α = .05 was 

conducted, as opposed to a one-tailed test.  

 

Results The results are summarized in Figure 5 for an autocorrelation of 0 

and in Figure 6 for an autocorrelation of .3. Again, it may be seen that all of the 

empirical Type I errors are at the expected .05 level for both autocorrelation 

values. Although the Investigation 3a results (i.e., the equivalence of dual-

randomization N = 3 and single-randomization N = 8) were not identical here, the 

general pattern was. In this case, however, the appropriate power equivalence 

involves dual N = 4 and single N = 8. Specifically, in Figure 6 it may be seen that 

with an autocorrelation of .3, the former and latter powers are .65 and .61, 

respectively, for an effect size of 1.0; and they are .93 and .89, respectively, for an 

effect size of 1.5. 
 
 

 
 
Figure 5. Investigation 3b: Comparison (α = .05, two-tailed) of randomization tests for the 

Single and Dual basic AB randomized designs replicated across N cases. The rejection 
rate of the null hypothesis is shown as a function of effect size and N, for a 15 
observations design with 5 potential intervention start points designated from between 
the 6th and 10th observations inclusive and an autocorrelation of 0. 
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Figure 6. Investigation 3b: Comparison (α = .05, two-tailed) of randomization tests for the 

Single and Dual basic AB randomized designs replicated across N cases. The rejection 
rate of the null hypothesis is shown as a function of effect size and N, for a 15 
observations design with 5 potential intervention start points designated from between 
the 6th and 10th observations inclusive and an autocorrelation of .3. 

 

 
 

Thus, in the present investigation we observe that for two-tailed tests the 

dual-randomization power benefits (relative to single randomization) are 

comparable to those reported for Investigation 3a’s one-tailed tests. It is important 

to point out, however, that the situations examined here were all based on 

multiple-case (N > 1) designs. It turns out that for the special-case N = 1 situation, 

although the dual- over single-randomization power advantage is evident when 

one-tailed tests are conducted (as was true in Investigations 1 and 2), the dual- 

and single-randomization schemes yield equivalent power results with two-tailed 

tests. Because the two-tailed test is based on randomization-distribution absolute-

value outcomes, the dual-randomization distribution contains every outcome of 

the single-randomization distribution as well as its opposite-order complementary 

outcome, thereby yielding exactly the same p-value for each test. (To illustrate 

these notions, see Child 1’s hypothetical data, including Footnote a in Table 2. 

The 40 unsigned mean differences (i.e., 20 |B−A| plus 20 |A−B|) would constitute 

the dual-randomization distribution for a two-tailed test). Because there are 

across-case combinations when N > 1, there is no longer a one-to-one 
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correspondence between the single- and dual-randomization distributions and so 

their powers will generally differ, with the latter being greater (as was observed in 

Figures 5 and 6). 

Investigation 4: Randomized Intervention Order and/or 
Randomized Intervention Assignment in Levin and 
Wampold’s (1999) AB Pairs Design 

Another type of dual-randomization strategy is possible when a case consists of a 

pair of participants, as in Levin and Wampold’s (1999) simultaneous intervention 

start-point model. With the Levin-Wampold model, N participant (or other unit) 

pairs are created and the members of each pair are randomly assigned to two 

different intervention conditions (or to an intervention and control condition), X 

and Y. With this model, Levin and Wampold presented two hypotheses that 

would be of interest to researchers: (1) a general intervention effectiveness 

hypothesis, namely that averaged across the two intervention conditions, there is 

no difference between Phase A and Phase B performance (analogous to the time 

main effect in a conventional two-treatment pretest-posttest design); and (2) a 

comparative intervention effectiveness hypothesis, namely that the change in 

participants’ performance from Phase A to Phase B is the same in the two 

intervention conditions (analogous to the treatment-by-time interaction in a 

conventional two-treatment pretest-posttest design). Unrecognized by Levin and 

Wampold at the time, the randomization test of each of these hypotheses could 

potentially benefit from an additional randomization component.  For the general 

intervention effectiveness hypothesis, that component is AB order randomization 

of the kind that we have considered in Investigations 1-3, either with or without a 

mandatory A' baseline phase; and for the comparative intervention hypothesis, 

that component consists of within-pair intervention randomization, wherein pair 

members are randomly assigned to the two intervention conditions. 

Implementing either of these randomization types increases the total number 

of possible outcomes from 
1

N

i i
k

  for Levin and Wampold’s (1999) original 

single randomization-test procedure (i.e., the number of potential intervention 

start points for each pair) to 
1

2
N N

i i
k


  for the present dual approach (i.e., either 

the number of possible random assignments of AB orders or the number of 

possible random assignments of interventions to pair members, times the number 

of potential intervention start points for each pair). In Investigation 4, we examine 

the statistical power consequences associated with the dual approach’s additional 
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randomization component, for both the general and the comparative intervention 

effectiveness hypotheses. 

Method  

A power comparison of dual versus single randomization for the two hypotheses 

(general and comparative intervention effectiveness) was conducted with a one-

tailed α of .05. Specifically, designs with 2, 3, and 4 pairs of participants were 

examined based on 15 observations per participant. There were 5 potential start 

points for each pair, randomly selected from observations 6 through 10. For the 

general intervention effectiveness simulations, with single randomization each 

pair received the baseline phase (A) followed by the intervention (B) phase; in 

contrast, with dual randomization the pairs were randomly assigned to either an 

AB or BA order. For the comparative intervention effectiveness simulations, with 

single randomization the first pair member always received Intervention X and 

the second pair member Intervention Y; in contrast, with dual randomization, pair 

members were randomly assigned to the two intervention conditions. 

The time-series data for each case were simulated as described in the 

previous investigations, with the standardized effect size for the pair member 

assigned to Intervention X set to d1 and the standardized effect for the pair 

member assigned to Intervention Y set to d2. For the general intervention 

effectiveness test, d = (d1 + d2)/2 was varied from 0 to 3 in increments of .5 by 

setting d1 = d2 = d. For the comparative intervention effectiveness test, d = d2 − d1, 

d1 was set to 0 and d2 was varied from 0 to 3 in increments of .5. The latter effect 

size can be alternatively written as d = [(μB2 − μA2) − (μB1 − μA1)]/σ, which is 

readily conceptualized and interpreted as a standardized ‘difference in differences’ 

(e.g., Marascuilo & Levin, 1970). The present measure differs from the 

standardized ‘half difference in differences’ effect-size estimator of (d2 − d1)/2 

that is provided in Gafurov and Levin’s (2014) ExPRT program for the 

comparative intervention effectiveness hypothesis. The half difference-in-

differences measure was incorporated into ExPRT because it represents a properly 

scaled interaction contrast when formulated for sample-size and power 

determination purposes from an analysis-of-variance perspective (Levin, 1997). It 

therefore should be kept in mind that a present power estimate associated with a 

difference-in-differences effect size of 2.00 corresponds to the power estimate 

associated with ExPRT’s half difference-in-differences effect size of 1.00. 
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Results 

General intervention effectiveness hypothesis      Dual- and single-randomization 

powers for Levin and Wampold’s (1999) general intervention effectiveness 

hypothesis are presented in Figures 7 and 8 for autocorrelations of 0 and .3, 

respectively. The averaged pair power results presented in Figures 7 and 8 are 

easy to describe, especially when juxtaposed with Investigation 3a’s individual 

results that were previously presented in Figures 3 and 4. Although the actual 

power values differ in the two investigations, the patterns involving single- and 

dual-randomization powers―namely, the magnitudes of the power advantage 

favoring the latter over the former―are remarkably similar. For example, when 

the total number of cases is held constant (e.g., 4 individuals in Investigation 3a, 2 

pairs here; 6 individuals in Investigation 3a, 3 pairs here), with an autocorrelation 

of .3, mid-range effect-size values of d = 1 and 1.5, and two asymptotic power 

situations excluded, the six differences between the dual- and single-

randomization powers all hover around .40. Specifically, from the graphs based 

on N = 4 individuals (Figure 4) and N = 2 pairs (Figure 8), it may be determined 

that the respective power differences are .43 and .37 for d = 1 and are .36 and .39 

for d = 1.5; for N = 6 individuals and N = 3 pairs, the power differences are .42 

and .40 for d = 1. 

 

Comparative intervention effectiveness hypothesis            Dual- and single-

randomization powers associated with Levin and Wampold’s (1999) comparative 

intervention effectiveness hypothesis are presented in Figures 9 and 10 for 

autocorrelations of 0 and .3, respectively. In each of those figures it may be seen 

that the dual-randomization procedure, which incorporates additional 

randomization-distribution outcomes as a result of randomly assigning pair 

members to the two interventions, X and Y, produces substantial power increases 

over Edgington’s (1975) original single-intervention start-point procedure. For 

example, in Figure 10 based on an autocorrelation of .3, N = 3 pairs, and a 

difference-in-differences effect size of 2.0 (which corresponds to ExPRT’s half 

difference in differences of 1.0), power for the dual-randomization procedure 

is .87 as compared to only .46 for the single-randomization procedure. 
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Figure 7 

 

 
Figure 8 

 
Figures 7 and 8. Investigation 4: Comparison (α = .05, one-tailed) of powers for the 

Single and Dual randomized general intervention effectiveness hypothesis replicated 
across N pairs. The rejection rate of the null hypothesis is shown as a function of effect 
size and N, for a 15 observations design with 5 potential intervention start points 
designated from between the 6th and 10th observations inclusive and an autocorrelation of 
0 (Figure 7) or .3 (Figure 8). 
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Figure 9 

 
Figure 10 

 
Figures 9 and 10. Investigation 4: Comparison (α = .05, one-tailed) of powers for the 

Single and Dual randomized Levin-Wampold comparative intervention effectiveness 
hypothesis replicated across N pairs. The rejection rate of the null hypothesis is shown as 
a function of effect size and N, for a 15 observations design with 5 potential intervention 
start points designated from between the 6th and 10th observations inclusive and an 
autocorrelation of 0 (Figure 9) or .3 (Figure 10). Effect sizes are defined in a difference-

in-differences metric, which correspond to half difference-in-differences effect sizes given 
by the present values divided by 2 (see text for further discussion). 
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Discussion 

The present single-randomization powers associated with both the general and 

comparative intervention effectiveness hypotheses are quite consistent with those 

reported in an earlier simulation study by Lall and Levin (2004). However, the 

results of Investigation 4 make it clear that whenever either AB phase 

randomization is employed (general intervention effectiveness hypothesis, as is 

also manifested in Investigations 1-3) or the pair members are randomly assigned 

to the two intervention conditions, X and Y (comparative intervention 

effectiveness hypothesis), then the researcher can justifiably incorporate that 

randomization component into the randomization test. Doing so produces a large 

power boost relative to Levin and Wampold’s (1999) original randomization tests 

that incorporate only intervention start-point randomization. The impressive dual-

randomization power increases for the comparative intervention hypothesis are 

particularly noteworthy and heretofore undocumented. Although Levin and 

Wampold recognized the methodological (internal validity) necessity of randomly 

assigning the XY pair members to intervention conditions when testing that 

hypothesis, their single-randomization test procedure does not capitalize on the 

statistical power benefits that result from random assignment. 

At the same time, and as was suggested by Levin and Wampold (1999, p. 

78), now suppose that instead of X and Y representing two alternative 

interventions to which pair members are randomly assigned (as was examined 

here), they represent some non-randomly assigned participant-differentiating (or 

status) variable of interest (e.g., gender, age, ability, amount of prior experience), 

where one pair member (X) represents one level of the status variable (e.g., male, 

older, higher, more prior experience) and the other pair member (Y) represents a 

different level (female, younger, lower, less prior experience). In that nonrandom-

assignment situation, the additional 2N X vs. Y randomization outcomes of the 

modified Levin-Wampold formula (provided earlier in this section) cannot be 

incorporated into the randomization distribution, in which case the statistical test 

would revert to the original procedure developed by Levin and Wampold. It 

should be noted, however, that: (1) the inclusion of the status variable (e.g., 

gender, age, ability, amount of prior experience) still permits the investigation of 

a possible intervention-by-status interaction (e.g., the intervention is relatively 

more effective for individuals with less prior experience than for individuals with 

more prior experience) with the comparative intervention effectiveness test; and 

(2) if AB phase randomization is included in a nonrandomized status-variable 

study, then the 2N factor associated with phase randomization in the modified 

Levin-Wampold general intervention effectiveness formula (provided earlier in 
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this section and the primary focus of the present order-randomization study) 

would reappear. 

Let us additionally consider a participant-pairs situation in which both the 

XY and the AB factors have randomized components. For example, X and Y 

could represent two randomly assigned instructional interventions: experimental 

vs. control (as in Investigation 4, and the primary factor of interest); and A and B 

could represent two types of practice: teacher- vs. self-directed (the secondary 

factor of interest), the order of which is randomly assigned to each pair. In that 

situation, the currently investigated two-factor randomization design (intervention 

start points and phase orders) could be expanded to encompass a third randomized 

factor (intervention start points, instructional intervention, and practice-type phase 

order). Yet, it is important to note that: (1) incorporating either AB or XY 

randomization into the Levin-Wampold (1999) simultaneous pairs design will 

enhance the design’s internal validity and produce a statistical power increase to 

detect general (AB) or comparative (XY) intervention effectiveness, relative to 

the power of the original procedure; and (2) although incorporating both AB and 

XY randomization components into the design (as in the present three randomized 

factor design example) provides a double internal-validity enhancement, the 

resulting power is exactly the same as that associated with incorporating only one 

of these additional randomization components (i.e., either AB or XY). 

Investigation 5: Randomized Intervention Order for the 
Single-Case Crossover AB Design 

The crossover design is a standard investigative strategy in conventional-group 

educational intervention research (see, for example, Jones & Hall, 1982; and 

Levin et al., 1990, Exp. 1). With a crossover design it is possible to compare two 

intervention conditions (or an intervention and a nonintervention control 

condition) in two independent groups that also receive both intervention 

conditions in counterbalanced orders. Although various single-case designs (e.g., 

the alternating treatment design) allow for each case to receive two or more 

interventions, the within-case structuring and/or rapid alternation of treatments 

does not provide an adequate parallel to capture the essence of the crossover 

design. With a little tweaking, however, the present order-randomization approach 

can be adapted to capture that essence.  

With A and B representing two different interventions, the present order-

randomization modification of Marascuilo and Busk’s (1988) model has all the 

apparent trappings of a crossover design. However, adding a straightforward 
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order-randomization component to that model may not adequately fit a single-

case researcher’s crossover-design bill. Specifically, randomizing the intervention 

order independently for all participants (or other units) in the Marascuilo-Busk 

model does not guarantee that an equal number of participants will receive the 

two orders, AB and BA―something that is desirable, if not essential, for 

producing a study that is completely counterbalanced with respect to the order of 

intervention administration. In fact, in the extreme, a simple randomization 

scheme could actually result in all participants receiving the same order of 

intervention administration. In a single-case intervention study with a small 

number of cases, that situation is not as unlikely as it may initially appear. For 

example, with N = 2 cases it will happen half the time; with N = 3 it will happen 

25% of the time; and with N = 4, it has a 12½% chance of occurring. It should 

also be recognized that it is not possible to have complete (i.e., perfect) order 

counterbalancing with an odd number of participants.  

 Consequently, a potentially useful alternative is a crossover design that is 

completely counterbalanced with respect to the order in which the two different 

interventions are administered. Implementing such a procedure perfectly controls 

for potential contaminating effects associated with the two different intervention 

orders (AB and BA) and therefore eliminates order effects as an internal validity 

concern. This can be accomplished with a restricted randomization scheme, the 

Type I error and power characteristics of which are explored next in the context of 

Investigation 5. 

Method 

In this investigation we examined the effect on Type I error and power 

characteristics of restricting the dual-randomization scheme to ensure a balance 

between cases assigned to crossover design orders AB and BA.  Specifically, a 

restricted dual-randomization crossover design (henceforth referred to as 

restricted) with 15 observations and k = 5 potential start points for each case 

randomly selected from observations 6 through 10 was examined for conditions 

with 2, 3, 4, 5, and 6 cases. For conditions with an even number of participants 

the number assigned to AB was restricted to equal the number assigned to BA, 

resulting in a augmented multiplier factor of    !/ ! !
N

x
N x N x    to the kN 

potential intervention start-point randomization outcomes (or 
1

N

i i
k

  when the 

number of potential intervention start points differs across cases), where N is the 

total number of cases and x is the number of cases that are to be randomly 

assigned to each of the two administration orders. For an odd number of 
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participants the number assigned to AB was restricted to equal the number 

assigned to BA, plus or minus 1. In the latter (odd number) case, because of the 

dual-randomization process of: (1) randomly determining which order, AB or BA, 

was to be associated with the larger number; and (2) randomly assigning the two 

orders to participants, this resulted in an augmentation factor of 

   2 2 !/ ! !
N

x
N x N x   

 (see Levin et al., 2014, p. 192). Effect sizes were 

varied from 0 to 3 in increments of .5, again the autocorrelation was set to 0 or .3, 

and one-tailed α = .05 tests were conducted. 

Results 

Results from the conditions where the autocorrelation is 0 are shown in Figure 11, 

whereas those for an autocorrelation of .3 are shown in Figure 12. For 

comparative purposes, results from the unrestricted-dual randomization designs 

(henceforth referred to as unrestricted) of Investigation 3a are also included in 

those two figures. In Figures 11 and 12 it is clear that for all sample sizes the 

restricted-randomization tests yielded empirical Type I errors (i.e., when the 

effect size was 0) that corresponded with their nominal .05 values. Although it is 

evident from Figures 11 and 12 that the restricted-randomization crossover-design 

powers are uniformly lower than the corresponding unrestricted-randomization 

powers, the difference between the two becomes less and less noticeable with 

increases in sample size. With Ns of 5 and 6, for example, the power differences 

are negligible for all practical purposes. At the same time, it should be pointed out 

that even at the smaller sample sizes the restricted-randomization crossover-

design powers are respectable. To wit, in Investigation 3a it was indicated that 

with an autocorrelation of .3 and N = 3 participants, the unrestricted-

randomization test’s power for detecting an effect size of d = 1.5 was equal to .90 

(reproduced in Figure 12); and as may also be seen in Figure 12, for the same set 

of parameters the restricted-randomization crossover-design test’s power is .865. 
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Figure 11. Investigation 5: Comparison (α = .05, one-tailed) of randomization tests for the 

Restricted Dual and Unrestricted Dual AB randomized crossover designs replicated 
across N cases. The rejection rate of the null hypothesis is shown as a function of effect 
size and N, for a 15 observations design with 5 potential intervention start points 
designated from between the 6th and 10th observations inclusive and an autocorrelation of 
0. 

 

 

 
 
Figure 12. Investigation 5: Comparison (α = .05, one-tailed) of randomization tests for the 

Restricted Dual and Unrestricted Dual AB randomized crossover designs replicated 
across N cases. The rejection rate of the null hypothesis is shown as a function of effect 
size and N, for a 15 observations design with 5 potential intervention start points 
designated from between the 6th and 10th observations inclusive and an autocorrelation 
of .3. 
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Investigation 6: Randomized Intervention Order for the 
Single-Case ABAB Design 

In Investigation 5 the simulations were extended to four-phase ABAB designs 

(also referred to as reversal or operant designs―see, for example, Kratochwill & 

Levin, 2010). More specifically, Type I error and power were examined for 

Onghena’s (1992) randomized intervention start-point ABAB design (Single) and 

a combined randomized intervention start-point plus random-order (ABAB versus 

BABA) design (Dual), with the dual approach enhancing the ABAB design’s 

internal validity by virtue of its controlling for potentially confounding order 

effects.  

Method 

The effect of case replications (more participants) on power was examined for a 

design with 23 observations and a minimum of 5 observations in each of the four 

phases, which implies that the number of possible permutations for one case is 20 

for the single-randomized design (for computational details, see Onghena, 1992) 

and 40 for the dual-randomized design. The simulations included 1, 2, 3, or 4 

participants, effect sizes that varied from 0 to 3 in increments of .5, and an 

autocorrelation of 0 or .3. Sample sizes greater than 4 were not investigated 

because ABAB designs provide more intervention-effect information per case 

than AB designs and thus they tend to be replicated across fewer participants. 

Thus, the value in extending the study to larger numbers of participants was 

judged not to warrant the increased computational time that would have been 

required. All tests (based on the average of the two B-phase observations minus 

the average of the two A-phase observations) were conducted with a one-tailed 

Type I error probability of .05. In that regard, it should be mentioned that the 

present simulations are based on the weighted (by the number of outcome 

observations, O) A- and B-phase means [i.e., (OA1MA1 + OA2MA2)/(OA1 + OA2) 

and (OB1MB1 + OB2MB2)/(OB1 + OB2)] whereas Gafurov and Levin’s (2014) 

ExPRT program calculations are based on the unweighted means [(MA1 + MA2)/2 

and (MB1 + MB2)/2]. Power differences attributable to the two weighting schemes 

per se should be minimal for the set of parameters that were specified for the 

present simulations, however. 
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Figure 13 

 

 
Figure 14 

 
Figures 13 and 14. Investigation 6: Comparison (α = .05, one-tailed) of randomization 

tests for the Single and Dual randomized ABAB designs replicated across N cases. The 
rejection rate of the null hypothesis is shown as a function of effect size and N, for an 
autocorrelation of 0 (Figure 13) or .3 (Figure 14), and a 23 observations design with a 

minimum of 5 observations in each of the four phases. The resulting number of possible 
randomizations is 20 for the Single randomization scheme and 40 for the Dual 
randomization scheme. 
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Results 

Results from the conditions where autocorrelation was 0 are shown in Figure 13, 

while those for an autocorrelation of .3 are shown in Figure 14. As was true for 

the AB designs, once again the present dual-randomization scheme greatly 

overpowers the single-randomization scheme. For example, with an 

autocorrelation of .30 an effect size given by d = 1.5, and an N = 2 design, single-

randomization ABAB power is equal to .66 whereas dual-randomization ABAB 

power is .895―a nontrivial power difference of almost .24. For the single-

randomization scheme to achieve comparable power (.91) to that of the dual-

randomization scheme (.895) would require twice as many participants, namely 

N = 4. 

Investigations 7 and 8: The Single-Case AB Design 
Revisited 

What follow are two additional AB design investigations, both of which follow 

directly from colleagues’ concerns about data characteristics of the simulations 

reported thus far. One such concern focuses on the series lengths associated with 

all of the simulations conducted so far and the other focuses on the distributional 

characteristics of the outcome measure that comprises all of those simulations. 

These two concerns are addressed in Investigations 7 and 8, respectively. 

Investigation 7 

In a recent survey of single-case intervention research reported in 21 journals and 

based on 809 cases during the year 2008, Shadish and Sullivan (2011) reported 

that the modal and median series length per case consisted of 20 total 

observations. The positively skewed distribution had a mean of 27.0 and range of 

2 to 160. Approximating from Shadish and Sullivan’s frequency histogram 

(Figure 2), one can estimate that 23% of the cases had series lengths in the 20-29 

range, with 16% in the 30-39 range, 6% in the 40-49 range, and 5% that were 50 

or more. Moreover, it is not difficult to locate single-case intervention studies in 

recent years that included 50 or more outcome observations per case―see, for 

example, Lucynski, Hanley, & Rodriguez (2014), with 6 children and 

approximately 50 observations per child; Pellecchia et al. (2011), with 8 children 

and 60 or more observations per child; Hanley, Jin, Vanselow, & Hanratty (2014), 

with 3 children and approximately 70 observations per child; and Donaldson, 
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Trahan, & Kahng (2014), with 1 adult exhibiting dementia and approximately 130 

observations. 

In the present Investigation 1, the simulation consisted of 30 outcome 

observations; in Investigation 2, the range spanned from 20 to 150; in 

Investigations 3 and 4 there were 15 outcome observations; in Investigation 5 

there were 15 and 30; and in Investigation 6 there were 23. Therefore, the series 

lengths for the present simulations do not seem too far out of line with those of 

single-case intervention studies that are being reported in the literature, where at 

least half of them include at least 20 observations (Shadish & Sullivan, 2011). 

Why, in the first place, was a series as long as 30 decided upon for our 

Investigations 1 and 5? The answer is simple with respect to the primary focus of 

the study. Specifically, at least 21 observations (i.e., 20 potential intervention 

points with at least one baseline observation and one intervention observation) are 

required to compare Edgington’s (1975) single randomization-test procedure and 

the present dual modification based on a one-tailed α of .05. We settled on 30 

total observations to provide at least 5 baseline observations and 5 intervention 

observations, thereby obtaining some degree of stability in those two series. 

That said, in Investigation 7 we examined whether the already reported 

power difference favoring the dual- over the single-randomization approach 

would generalize to shorter―in fact, very short―series (N < 10), as was 

analogously examined by Levin et al. (2011) in their short series Investigation 2’s 

AB design.  

 

Method Here, the simulation parameters and procedures of Investigation 3 

were again selected and applied to three short-series conditions. Power for each of 

these conditions was assessed for the single- and dual-randomization test 

procedures (α = .05, one-tailed) for both series based on an autocorrelation of 0 

and those based on an autocorrelation of .30.   

In one condition two cases were included, with 9 outcome observations per 

case. The first two observations were always in the first phase, the last two 

observations were always in the last phase, and the intervention start point was 

randomly chosen from among the middle five observations in the series.  In a 

second condition three cases were included, with 7 outcome observations per case. 

The first two observations were always in the first phase, the last two observations 

were always in the last phase, and the intervention start point was randomly 

chosen from among the middle three observations in the series.  The third 

condition consisted of five cases, with 8 outcome observations per case. The first 

three observations were always in the first phase, the last three observations were 
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always in the last phase, and the intervention start point was randomly chosen 

from among the middle two observations in the series. 
 
 

 
 
Figure 15. Investigation 7: Comparison (α = .05, one-tailed) of randomization tests for the basic AB 

randomized intervention start-point design (Single) and the randomized intervention start-point plus 
randomized intervention-order design (Dual). The rejection rate of the null hypothesis is shown as a 
function of the effect size and level of autocorrelation for: (A) a two-participant design with nine 
observations each where the start point is randomly assigned to one of the middle five observations, 
(B) a three-participant design with seven observations each where the intervention start point is 
randomly assigned to one of the middle three observations, and (C) a five-participant design with 
eight observations each where the start point is randomly assigned to one of the middle two 
observations. 
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Results The results are summarized in the three panels of Figure 15, where 

it may clearly be seen that, as in Investigation 3a, with the Type I error well 

controlled, in all three conditions the dual- randomization test’s powers by far 

surpass those of the single-randomization test. A direct comparison of selected 

dual-over-single power advantages in the long-series Investigation 3a (Figure 4) 

and the present short-series investigations (Figure 15) is summarized in Table 3, 

where it should be noted that the advantages in the short-series investigations are 

comparable to (or larger than) those of the long-series investigations. On that 

basis, it can be concluded that the appeal of the dual-randomization approach is 

not restricted to long-series intervention studies. The approach applies equally 

well, if not better, to intervention studies consisting of a total of 7, 8 or 9 outcome 

observations. 
 
 
Table 3. Selected single- versus dual-randomization power comparisons of the present 

longer (Investigation 3a, Figure 4) and shorter (Investigation 7, Figure 15) series 
simulations (SL = Series Length, PISP = Number of Potential Intervention Start Points) 
 

N d r Size (SL/PISP) Single Dual Difference 

2 2 0.3 Longer (15/5) 0.44 0.85 0.41 

   
Shorter (9/5) 0.42 0.8 0.38 

3 1.5 0.3 Longer (15/5) 0.49 0.9 0.41 

   
Shorter (7/3) 0.28 0.73 0.45 

5 1 0.3 Longer (15/5) 0.45 0.89 0.44 

      Shorter (8/2) 0.15 0.71 0.56 

 
 

As may also be seen in Figure 15, in contrast to the long-series results 

presented in Figures 3 and 4, throughout the present study, and in previous 

investigations, the powers associated with the single-randomization approach do 

not decrease as the autocorrelation increases from 0 to .30. In fact, a slight power 

increase may be observed for the larger effect sizes in Panels B and C. This same 

positive relationship between autocorrelation and power for the single-

randomization approach was also discovered and noted by Levin et al. (2011) in 

their short-series Investigation 2. Those authors offered a speculative 

interpretation of that finding, but a experimental examination of that interpretation 

remains to be conducted. 
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Investigation 8 

In all of the present simulations, the data were generated assuming that the 

outcome measure was continuous and normally distributed, whereas in many 

single-case intervention studies the outcome measures consist of discrete counts 

or rates. Therefore, to assess whether the power differences favoring the dual-

over-single randomization approach would be observed even in an extremely non-

normal distribution situation, Investigation 1 was replicated with the only change 

being that the outcome measure was simulated to be a binary variable as opposed 

to a continuous one.  

 

Method More specifically, the same algorithms were used to generate the 

data, but the resulting values were dichotomized such that all values over 1 were 

recoded as 1 and all values under 1 were recoded as 0. Thus, for conditions 

without autocorrelation, the baseline observations had a probability of .34 of 

being a 1 (and .66 of being a 0), whereas the probability of obtaining a 1 in the 

intervention phase depended on d (e.g., when d equaled 0, 1, 2, 3, 4, and 5, the 

probabilities of obtaining a 1 were .34, .50, .84, .98, .999, .99997). 
 
 

 
 
Figure 16. Investigation 8: Comparison (α = .05, one-tailed) of randomization tests for the basic AB 

randomized intervention start-point design (Single) and the randomized intervention start-point plus 
randomized intervention-order design (Dual), where the outcome is binary and the intervention start 
point is randomly selected between the 6th through the 25th observations inclusive in a 30-
observations study. The rejection rate of the null hypothesis is shown as a function of the effect 
size and level of autocorrelation. 
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Results The results of this simulation may be seen in Figure 16. Similar to 

when the continuous outcome was examined (Investigation 1) the dual-

randomization approach consistently leads to greater power than the single-

randomization approach, but as would be anticipated, the dichotomization of the 

outcome lessens the power for each. Also of note, the power estimates reach a 

ceiling below 1.0, which can be explained by the baseline observations being set 

so there was a .34 probability of observing the desired behavior. If the baseline 

probability had been set lower, say to .01, the difference in probabilities between 

phases could be larger, leading to higher observed maximum powers. 

General Discussion 

In the eight Monte Carlo investigations reported here, we discovered that in 

situations where researchers are able to randomize the order in which the phases 

of single-case AB and ABAB designs (or the interventions themselves in paired-

cases designs) can be administered by, for example, simple coin flips, it is clearly 

advantageous to do so. Order randomization represents a valuable addition to 

Edgington’s (1975) and Onghena’s (1992) randomized start-point models, in that 

it: (1) enhances those designs’ internal validity (a methodological improvement); 

and (2) effectively controls the associated randomization test’s Type I error 

probability, while affording increases in the test’s power (a statistical 

improvement). In many of the instances examined, these power increases were 

dramatic with respect to a single-case researcher’s economic savings. For instance, 

in Investigation 2’s N = 1 simulations we found that an AB design with the 

present dual-randomization scheme could require less than half as many outcome 

observations as Edgington’s original single-randomization scheme. Specifically, 

as may be seen in Figure 2, for α = .05 (one-tailed), an effect size of 2.0, and a 

series autocorrelation of .3, the dual-randomization approach based on 30 

outcomes yields power of .67. In contrast, to achieve similar power with the 

single-randomization approach requires between 80 and 90 outcome observations. 

In alternative economic terms, in Investigations 3 and 5 we found that in N > 1 

investigations, about twice as many participants are required for the single-

randomization approach to achieve power equivalent to that of the dual-

randomization approach (see Figures 3-8). Similar dual-over-single randomization 

power advantages were achieved in the Investigations 4 and 6 randomized pair-

members AB design and four-phase ABAB design, respectively. Importantly to 

single-case researchers from both practical and versatility perspectives, such 

power advantages were also observed in: (a) short-series designs consisting of as 



IMPROVED RANDOMIZATION TESTS 

42 

few as seven observations (Investigation 7); and (b) single-case intervention 

contexts associated with binary, rather than normally distributed, outcome 

measures (Investigation 8). 

Additional Considerations for the Single-Case Crossover Design 

Restricted or unrestricted randomization: Which is better?     To guarantee order 

balance (and, therefore, greater internal validity) in single-case AB crossover 

designs, a restricted dual-randomization scheme must be employed, rather than an 

unrestricted one. Although the restricted-randomization approach results in 

powers that are uniformly lower than those associated with an unrestricted-

randomization approach, as sample sizes increase beyond N = 2 or 3 cases the 

respective powers of the two designs are quite comparable. So, whenever a 

researcher is considering the tradeoff between a guaranteed crossover-design 

balance of intervention administration order (thereby controlling perfectly for 

order effects), on the one hand, and some degree of increased statistical power, on 

the other, then: (1) if the former is considered to be relatively more important, the 

researcher should select the restricted-randomization procedures of Investigation 

5; and (2) if the latter wins out as being relatively more important, the researcher 

should choose the unrestricted-randomization procedures of Investigation 3, 

especially when the sample size is relatively small (i.e., N < 3 or 4 cases). 

 

Controlling for potential confounding factors        In actual intervention research 

studies based on within-subjects designs, in general, and single-case AB crossover 

designs, in particular (as represented by current Investigation 5), more potentially 

confounding variables than simple order effects must be taken into account and 

controlled. That is, between-phase outcome changes may also be the result of 

other extraneous factors, including: external effects, such as those attributable to 

history; effects associated with the experimenter or instructor; and effects 

associated with the participant, such as novelty, Hawthorne, and “John Henry” 

effects (see, for example, Shadish, Cook, & Campbell, 2002). Such confounding 

variables can severely compromise an intervention study’s internal 

validity―namely, that the manipulated intervention per se was responsible for 

between-phase outcome changes―as well as its construct validity. In research 

now in progress, we are comparing the effects of extraneous factors on internal 

and statistical-conclusion validity in the present unrestricted and restricted 

crossover designs. 
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A random-assignment caveat          A few words of operational caution connected 

to the restricted design crossover design of Investigation 5 should be offered to 

interventionists who elect to implement that design in their research. Specifically, 

some researchers are likely to make a critical random-assignment mistake when it 

comes to implementing the randomization process correctly. With an even 

number of cases, there should be no problem, in that the researcher would 

randomly select half of the cases to receive an AB order of intervention 

administration, with the remaining half receiving the BA order. With an odd 

number of cases, however, the researcher needs to consider possible assignments 

where either the AB order or the BA order receives the larger number of cases. To 

do so, the researcher could go through a two-step randomization process, as 

follows. In Step 1, the researcher would randomly determine whether the larger 

number of cases is to receive the AB order or the BA order (e.g., 4 cases if N = 7). 

Then in Step 2, the researcher would proceed as in the previous “even N” 

situation, namely randomly selecting the N1 cases that will be receiving the AB 

order, with the remaining N2 cases receiving the BA order. Without the researcher 

conducting the restricted-randomization procedure in this two-step fashion (or 

through an analogous completely random-assignment process), subjectivity would 

enter into the researcher’s decision about which order (AB or BA) receives the 

one more (or one fewer) case, resulting in the randomization distribution and its 

associated statistical test being invalid. 

Levin and Wampold’s (1999) Simultaneous Pairs Intervention Start-

Point Model Revisited 

 In the present Investigation 4, we examined Levin and Wampold’s (1999) 

simultaneous pairs, comparative intervention effectiveness hypothesis, with a 

randomized XY intervention variable included in the randomization-test analysis. 

In that situation, we found the statistical power of the procedure to be greatly 

enhanced relative to that of the original Levin-Wampold procedure, for which the 

randomized intervention factor is not taken into account. We now consider a 

variation and an extension in conjunction with the present modified procedure. 

For the variation, suppose that the A and B phases represent two competing 

interventions and, as in Investigations 1-3, it is possible to randomize the order in 

which the two phases are administered (A followed by B or B followed by A). 

Within each participant pair, it is randomly determined which pair member is 

assigned the AB administration order and which the BA order (say, X = AB and 

Y = BA). The data are collected and, as in Investigation 4, the comparative 
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intervention effectiveness hypothesis is tested (with the inclusion of the 2N 

multiplier associated with the randomized XY factor) on the difference in 

differences, (XA1 – YB1) – (XB2 – YA2) = (XA1 + YA2) – (XB2 + YB1). Note that in 

this context the interaction actually represents a main effect comparison of 

Intervention A vs. Intervention B, just as it does in a conventional crossover 

design. Accordingly, this paired-cases design then becomes conceptually 

equivalent to the just discussed restricted-order crossover design of Investigation 

5, but because of the pairs structure here, for which it is guaranteed that: (1) there 

will be equal numbers of participants receiving each intervention order; and (2) 

within each pair, the crossover will occur at exactly the same point in time. 

For the extension of the modified Levin-Wampold (1999) simultaneous 

pairs comparative intervention effectiveness test, now suppose that two 

equivalently scaled (or commensurable) outcome measures, M1 and M2, are 

constructed to be differentially sensitive to an intervention; or alternatively, that 

M1 is expected to be more responsive to Intervention X than to Intervention Y and 

M2 is expected to be more responsive to Intervention Y than to Intervention 

X―as with Levin’s (1989) experimental illustrations of Campbell and Fiske’s 

(1959) discriminant validity and Morris, Bransford, and Franks’ (1977) transfer-

appropriate processing. The modified dual-randomization procedure to test Levin 

and Wampold’s comparative intervention effectiveness hypothesis can be readily 

extended to accommodate thedifferential outcome-measure effects addition. 

Specifically, with X and Y representing randomly assigned interventions within 

each pair, A and B representing baseline and intervention phases (as in 

Investigation 4), and M1 and M2 representing commensurable measures or tests, 

the data to be analyzed are simply the intervention-by-phase difference-in-

differences effect associated with M1 minus the same effect associated with M2, 

and which amounts to the three-way interaction of intervention by phase by 

outcome measure. This translates into an assessment of whether whatever 

differential change from Phase A to Phase B that is produced by the two 

interventions is the same on the two outcome measures. As with the Investigation 

4 test of the two-way intervention-by-phase interaction (i.e., the comparative 

intervention effectiveness test), the statistical power to test this extended 

difference would also benefit from the 2N multiplier resulting from within-pair 

randomization of the intervention factor. 
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Extensions to Other Single-Case Intervention Designs and Situations 

Other single-case designs   Research by the present authors is currently 

in progress to extend the present randomized-order design-and-analysis procedure 

(combined with randomized intervention start points) to single-case intervention 

designs other than the AB-type and ABAB designs that were investigated here. 

Our initial efforts have been targeted at alternating treatment designs (Levin et al., 

2012) and multiple-baseline designs. In the former, independently randomizing 

the alternating A and B intervention phases both within and across participants 

has been recommended as an internal-validity enhancer (e.g., Kratochwill & 

Levin, 2010) and incorporating both randomized intervention start points and 

randomization statistical tests into the process is relatively straightforward. In the 

latter, although multiple-baseline designs typically include a set of staggered 

baseline (A) and intervention (B) phases across participants, the present 

randomized-order approach could be adopted for situations in which, as was 

discussed here, an initial mandatory A' series of baseline (warm-up or adaptation) 

observations is included. The approach might also be possible in situations where 

A represents a standard or basic instructional/behavioral practice and B represents 

a competing alternative practice. 

 

Other outcome measures   As well as testing for between-phase mean 

(level) changes, the present randomized-order procedure is similarly applicable to 

testing for changes in slope (trend) and variance (variability). All such tests are 

available in Gafurov and Levin’s (2014) Excel©-based randomization-test 

software, which is freely accessible from the Google Drive ExPRT (Version 1.2) 

website, https://code.google.com/p/exprt/. At the same time, simulation research 

now in progress (Levin et al., 2014) is assessing the Type I error probabilities and 

statistical powers of the present combined randomized intervention start-point and 

randomized-order approaches relative to Koehler and Levin’s (1998) randomized 

intervention start-point approach alone, with respect to tests of slope and variance, 

in various single-case intervention designs. 

 

Other intervention effect types  It is important to note that in the present 

eight-investigation set of Monte Carlo simulations, all intervention effects were 

modeled to represent immediate abrupt changes in the participant’s mean level: 

that is, a constant increase in the participant’s series of observations that is 

coincident with the initial potential intervention point specified by the 

researcher―or, in the case of the four-phase ABAB design, coincident with the 

initial potential phase-change (transition) point that was specified for each of the 

https://code.google.com/p/exprt/
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three phase changes. In some of our research in progress we are modeling other 

types of intervention effects as well, such as immediate gradual effects, delayed 

abrupt effects, and delayed gradual effects (see, for example, Lall & Levin, 2004). 

In each of these ongoing simulation studies our goal is to determine whether the 

present randomized-order approach and associated randomization test afford 

power benefits that are as impressive in other single-case design contexts (and for 

other outcome measures) as were discovered in the present AB and ABAB design 

tests of between-phase changes in level.   

Final Comments 

Although randomization schemes of the type advocated here may be opposed by 

single-case intervention researchers who have been steeped in the response-

guided tradition (see, for example, Ferron & Levin, 2014), we hope that such 

schemes will be received more positively by at least some traditional single-case 

interventionists. In fact, for years many alternating-treatment design users have 

been diligent in assigning interventions to phases or sessions using a block-

randomization process (Kratochwill & Levin, 2010; for a research example, see 

Holden, Bearison, Rode, Kapiloff, Rosenberg, & Rosenzweig, 2002). As a cause 

for further optimism, an increasing number of single-case investigations that have 

incorporated various forms of randomization design and analysis are appearing in 

both student dissertations and the published literature (e.g., Ainsworth, 2014; 

Bardon, Dona, & Symons, 2008; Bice-Urbach, 2015; Bonnet, 2012; Lojkovic, 

2014; Regan, Mastropieri, & Scruggs, 2005). 
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