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INVITED ARTICLE 

An Improved Two Independent-Samples 
Randomization Test for Single-Case AB-
Type Intervention Designs: A 20-Year 
Journey 

Joel R. Levin 
University of Arizona 

Tuscon, AZ 

John M. Ferron 
University of South Florida 

Tampa, FL 

Boris S. Gafurov 
George Mason University 

Fairfax, VA 

 

 
Detailed is a 20-year arduous journey to develop a statistically viable two-phase (AB) 

single-case two independent-samples randomization test procedure. The test is designed to 

compare the effectiveness of two different interventions that are randomly assigned to 

cases. In contrast to the unsatisfactory simulation results produced by an earlier proposed 

randomization test, the present test consistently exhibited acceptable Type I error control 

under various design and effect-type configurations, while at the same time possessing 

adequate power to detect moderately sized intervention-difference effects. Selected issues, 

applications, and a multiple-baseline extension of the two-sample test are discussed. 

 

Keywords: Single-case intervention research, randomization test, two independent 

samples 

 

Introduction 

In recent years, concerted efforts were made from various perspectives to increase 

the experimental quality and associated scientific credibility of single-case 

intervention research. Specifically, from a methodological standpoint, more 

rigorous design standards have been developed (e.g., Gast & Ledford, 2014; Horner 

& Spaulding, 2010; Kratochwill et al., 2013; Kratochwill & Levin, 2010; Tate et 

al., 2016), which are increasingly being accepted by the single-case research 

community. From a data-analysis standpoint, more sophisticated graphical and 

statistical procedures (e.g., Dart & Radley, 2017; Ferron & Jones, 2006; 

https://dx.doi.org/10.22237/jmasm/1556670480
https://dx.doi.org/10.22237/jmasm/1556670480
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Kratochwill & Levin, 2014; Wolfe et al., 2019; Shadish, 2014) have been appearing 

in the single-case intervention research literature. 

In the present note, we add to the single-case researcher's design-and-analysis 

toolkit what may be an invaluable statistical procedure. The procedure conforms to 

the methods of analysis classified as single-case randomization tests (Edgington, 

1975; Levin et al., 2014), which have also been gaining visibility and respectability 

over the past quarter of a century (e.g., Craig & Fisher, 2019; Edgington, 1996; 

Ferron & Levin, 2014; Heyvaert & Onghena, 2014; Michiels & Onghena, 2018). A 

randomization test is a probability-based nonparametric approach founded on fewer 

stringent distributional assumptions than standard parametric methods in certain 

applications, such as with small sample sizes and/or with autocorrelated (serially 

dependent) outcome observations (e.g., Ferron & Levin, 2014; Levin, 2007). When 

properly implemented in a manner consistent with a study’s design-randomization 

process, a randomization test yields statistical conclusions that are probabilistically 

valid (cf. Edgington, 1996; Levin, Kratochwill, & Ferron, 2019; and as will become 

apparent throughout this article). 

The procedure presented here, a two independent-samples randomization test 

developed to compare two conditions or interventions in single-case AB designs, 

was inspired by an earlier failure. This procedure will be shown to be statistically 

valid, in the sense of its exhibiting firm control of the experimental Type I error 

probability – in contrast to Levin and Wampold’s (1999) original version of such a 

test, which generally did not control the one-tailed Type I error probability to an 

acceptable degree and thereby produced illusory statistical power results (Lall & 

Levin, 2014). Then, with its statistical validity intact, the new procedure’s practical 

utility will be examined, in terms of its realistic ability to detect between-samples 

A-B phase differences of varying types and magnitudes (i.e., its statistical power to 

detect different varieties of group-by-phase “interaction” effects). 

Single-Case AB-Type Intervention Designs 

Before continuing, consider single-case AB intervention designs (Levin et al., 

2014). They are in the class of “interrupted time-series designs” (e.g., Glass et al., 

1975, p. 2), where there are A and B phases, each consisting of multiple outcome 

observations (O1, O2, …, OP). The A phase typically represents a baseline or control 

phase and the B phase typically represents an intervention phase, although A and 

B could also represent two different intervention conditions. A participant (or case) 

goes through both phases and change is assessed by comparing the set of B 

observations with the set of A observations with respect to some summary measure 
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of interest (e.g., within-phase mean, slope, variability). In this sense, when a phase 

difference in means is the focus, the design is the single-case analog of a 

conventional one-sample pretest-posttest design. Elevating an AB-type design’s 

acceptability requires the addition of more A and B phases (e.g., ABAB…AB) 

and/or the addition of more cases (Kratochwill et al., 2013), along with the 

incorporation of various forms of design-and-analysis randomization (Ferron & 

Levin, 2014; Kratochwill & Levin, 2010). 

For a two-phase AB design, randomization of the A and B phases for each 

case would appear to be a minimum design requisite, to disentangle the obvious 

confounding of the intervention and potential time-related effects (e.g., order, 

testing, fatigue, maturation, history, and the like – see, for example, Shadish et al., 

2002). In Levin et al. (2014), concern for this issue was effectively controlled for 

through a design in which both the A and B phases and the intervention “start points” 

(i.e., the points of transition from Phase A to Phase B) were randomized on a case-

by-case basis, while at the same time capitalizing on the randomization process to 

increase substantially the power of the study’s statistical analysis. 

The Levin-Wampold Independent- and Paired-Case Two-Intervention 

Randomization-Test Models 

Levin and Wampold (1999) developed single-case AB two-intervention 

randomization design-and-analysis models – essentially independent-case and 

paired-case – which are respectively akin to conventional split-plot and randomized 

blocks ANOVA designs and analyses (e.g., Kirk, 1995). In the independent-case 

variation, from a total of N cases, NX and NY cases are randomly assigned to two 

intervention (or to intervention and control) conditions, X and Y, where for each 

condition there is a within-case baseline (A) and intervention (B) phase. The design 

can also be regarded as the single-case analog of a conventional two-group pretest-

posttest design (Shadish et al., 2002). In the paired-case variation, the N cases are 

randomly assigned in pairs to either Intervention X or Intervention Y and all cases 

go through the A and B phases. In both design variations, a randomization test (the 

“comparative intervention effectiveness” test) to assess the intervention type (X, Y) 

by phase (A, B) interaction reveals the critical effect of interest: namely, the 

differential impact of the two interventions. Because of the specific randomization 

components implemented in Levin and Wampold’s two test variations, it can be 

argued that each affords a scientifically credible single-case assessment of the 

comparative effectiveness of two alternative interventions, or of an intervention and 

a control condition (see, for example., Levin, 1994). (Levin and Wampold’s two 
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models also provide randomization tests of the “general intervention effectiveness” 

of the two interventions, as defined by the A- to B-phase change in the outcome 

measure averaged across the two intervention types. The general intervention 

effectiveness test was not a focus of the present investigation.) 

A 20-Year Journey 

Unfortunately, often what appears lustrous in theory may lack luster in application. 

Lall and Levin’s (2004) Monte Carlo simulations corroborated that although Levin 

and Wampold’s (1999) paired-case comparative intervention effectiveness test 

consistently performed exactly as was expected with respect to its one-tailed Type 

I error (α) control, as was noted earlier, the independent-case comparative 

intervention effectiveness test did not behave well under most simulation 

conditions, as represented by combinations of series length, number of cases, 

number of potential intervention start points, and degree of within-phase 

“autocorrelation” (Lall & Levin, 2004). With nominal αs set at .05, the test 

sometimes produced empirical αs as high as .15. As a result, the Levin-Wampold 

independent-case comparative intervention effectiveness test lacks statistical 

conclusion validity (Shadish et al., 2002) and therefore cannot be endorsed for 

widespread practical application. 

 

Faulty first principles Statistically valid randomization tests require a direct 

correspondence between the random-assignment process and the distribution of all 

possible randomization outcomes produced by that process (Edgington, 1980; 

Edgington & Onghena, 2007; Ferron & Levin, 2014; Levin, Ferron, & Gafurov, 

2019; Michiels & Onghena, 2018). Without that correspondence, the statistical 

properties of the test can be seriously compromised – and, of present concern, the 

ability of the test to control its αs at the desired level (see, for example, Ferron et 

al., 2003), Levin and Wampold (1999) faced the daunting task of deriving an 

appropriate randomization distribution in their development  of an independent-

case comparative intervention effectiveness test. Because there was no readily 

applicable recipe of how to produce that test’s randomization distribution, those 

researchers worked on the overall objective essentially from a combination of 

logical inference and brute force. In so doing, they constructed a null randomization 

distribution for comparing the mean Phase A-to-Phase B change for the two 

interventions, X and Y, by admitting into the distribution certain logically 

consistent outcomes while censoring and excluding logically inconsistent ones that 

were declared inadmissible (cf. Appendix A of Levin & Wampold, 1999). 
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Unfortunately, that approach proved to be unsuccessful, as was documented by the 

previously mentioned comparative intervention effectiveness test’s unacceptable α-

inflated simulation results reported by Lall and Levin (2004). 

 

Sixteen years of frustration and fidgeting Over the past 16 years, two recurring 

questions effected a good deal of torment by the test and fiddling with the test’s 

randomization distribution: 

 

1. Why didn’t Levin and Wampold’s (1999) original comparative intervention 

effectiveness test’s null randomization distribution pan out, as had 

repeatedly been experienced with earlier developed single-case 

randomization tests of the same class? 

2. Are there modifications of the test that can be made to produce an 

appropriate randomization distribution and enable the test to function 

properly? 

 

Finally A 2019 “Aha!” moment occurred when rather than conducting 

microanalyses of admissible and inadmissible randomization-distribution 

outcomes, our attention targeted the formulation of a back-to-the-drawing-board 

conceptual model on which the single-case comparative intervention effectiveness 

test was based. A systematic analysis of the problem revealed that an incorrect 

model had been applied to generating the proper randomization distribution for this 

test. To right the wrong, it was necessary to reconstruct the Levin-Wampold 

comparative intervention effectiveness randomization test from a different 

perspective. That perspective arose from considering the basis of two-sample 

permutation and randomization tests in the traditional nonparametric statistical 

literature (e.g., Conover, 1999; Levin, 2007). 

Step 1. Specifically, if N participants are to be randomly assigned to two 

intervention (or to intervention and control) conditions (X and Y), with NX 

participants in one condition and NY participants in the other, there is a total of 

N! / (NX! NY!) possible assignments of participants to conditions. For an example 

based on N = 6 participants and NX = NY = 3 then, 6! / (3! 3!) = 20 different 

assignments of 3 participants to each condition are possible. The same assignment 

process is applied in the present single-case context and a test statistic defined as 

the difference between the B- and A-phase means averaged across the three cases 

in one condition for each of the 20 possible combinations can be calculated. So, for 

example, the 20 Condition X B-A mean differences would consist of those 

associated with: Cases 1, 2, and 3; Cases 1, 2, and 4; etc., all the way through Cases 
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4, 5, and 6. 2. As a relevant aside, for the comparative intervention effectiveness 

tests discussed here, the B-A mean-difference outcomes from only one of the two 

conditions needs to be considered because the other condition’s outcomes are the 

mirror-image complements. 

Step 2. With this replicated single-case design that adopts a randomized 

intervention start-point rationale, we also take into account the number of potential 

intervention start points for each case (Marascuilo & Busk, 1988). With ki such start 

points for each of the N cases, the number of total randomization-distribution 

outcomes produced is equal to 

 

 1 2

1

N

N i

i

k k k k
=

   =K ,  

 

which for equal ki reduces to kN (see Levin et al., 2014). In this example, a total of 

N = 6 total participants, each of whom is randomly assigned k = 2 potential 

intervention start points, would yield 26 = 64 distinct randomization outcomes. 

Step 3. The total number of outcomes in the Condition X randomization 

distribution then becomes the product of the results in Step 1 and Step 2. Applying 

this multiplication operation produces a total of 
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randomization-distribution outcomes, which, for the present example is equal to 

20 × 64 = 1280 (i.e., each of the 20 3-case Condition X groupings combined with 

the 2 potential intervention start-point possibilities for each case). Accordingly, 

with a Type I error of .05, if the actually obtained B-A mean difference in the 

randomization distribution is among the .05 × 1280 = 64 largest in the predicted 

direction (e.g., X > Y), then a one-tailed significance probability (or p-value) of 

p ≤ .05 can be claimed. 

An Assessment of the New Test’s Statistical Behavior 

With the development of the new single-case comparative intervention 

effectiveness randomization test ostensibly on firm ground, we conducted a Monte 

Carlo simulation study to provide empirical support for its statistical-conclusion 

validity with respect to Type I error and power. 
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Method 

Incorporating the three steps just described, Monte Carlo simulation methods were 

implemented to examine the new comparative intervention effectiveness test’s 

Type I error rates and power for the test for: (a) designs consisting of 6 cases, of 

which 3 were randomly assigned to each of the two groups; as well as for (b) 

designs consisting 8 cases, of which 4 were randomly assigned to each of the two 

groups. We varied the series lengths from 10 to 30, which cover the range of series 

lengths that have been included in most single-case intervention studies (e.g., 

Ferron et al., 2010). In designs with 6 cases and 10 observations per case, we 

examined conditions where the actual intervention start point was established 

according to three different configurations: (1) it was set at Observation 6 for all 

cases (i.e., the same single fixed intervention start point was used for each case); 

(2) it was randomly selected from the same two potential intervention start points 

for each case (namely, Observation 5 or 6); or (3) it was randomly selected from 

the same five potential intervention start points for each case (namely, Observation 

4, 5, 6, 7, or 8). 

Similarly, for designs with 6 cases and 30 observations per case, conditions 

were examined where the intervention actual intervention start point was set at 

Observation 16 for all cases, with the preceding configurations being: (1) 

Observation 16 for each case; (2) Observation 15 or 16 for each case; or (3) 

Observation 14, 15, 16, 17, or 18 for each case. For conditions with a single fixed 

intervention start point, the number of possible random assignments was 20 [i.e., 

6! / (3! 3!)]; for conditions with 2 potential intervention start points, the number of 

possible random assignments was 1,280 (20 × 26); and for conditions with 5 

potential intervention start points, the number of possible random assignments was 

312,500 (20 × 56). For designs with 8 cases, parallel conditions were set for designs 

with 1 or 2 potential intervention start points (yielding 70 and 17,920 possible 

intervention start points, respectively), but we did not examine designs with 5 

possible intervention start points (yielding 27,343,750 possible random 

assignments), because of the excessive amount of computing space and time 

required. 

For each of these designs, time series data for each case were generated by 

adding a series of errors (e) to a series of true values (μ) such that at time t for case 

i the outcome value was yti = μti + eti. The errors were generated for each time series 

using the autoregressive moving-average simulation function (ARMASIM) in SAS. 

A first-order autoregressive model et = ρet−1 + at was specified where the variance 

of the white noise, VAR(at), was set to 1.0 and the autocorrelation, ρ, was set to .00 
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or .30. These values were used in other simulations of multiple-baseline data (e.g., 

Ferron & Sentovich, 2002; Ferron & Ware, 1995; Levin et al., 2018) and range 

from no autocorrelation (i.e., ρ = 0) to a value that is a little larger than the single-

case intervention research literature-based, meta-analytic average bias-adjusted 

autocorrelation of .20 (Shadish & Sullivan, 2011). 

The true values were based on both stable baseline phases (μti = 0) and stable 

intervention phases (μti = di). Thus, for all di > 0 (non-null B-phase) conditions, 

immediate abrupt effects that remained constant throughout the intervention phase 

were assumed. The values of di for the first intervention condition, X (dX) and for 

the second intervention condition, Y (dY) were set to values to obtain four effect-

size combinations: (1) null (dX = 0, dY = 0); (2) consistent small effect (dX = 1, 

dY = 1); (3) consistent large effect (dX = 3, dY = 3); and (4) six differential effect 

sizes favoring Condition X (described in the Results condition). For the new 

comparative intervention effectiveness test, the null and the two consistent effect 

conditions permitted estimating the new test’s Type I error rate (α), whereas the 

differential effect condition permitted examining the new test’s power. 

For configurations with 1 or 2 intervention start points, 100,000 experiments 

were simulated for each condition. For configurations with 5 intervention start 

points, 10,000 experiments were simulated per condition. For the latter 

configurations, we sacrificed a little precision to accommodate the substantial 

increase in the number of permutations and processing time required for simulated 

experiments based on 5 potential intervention start points per case. 

Results 

All statistical tests conducted were directional (one-tailed) based on α = .05. One-

tailed tests have typically been adopted for single-case intervention simulation 

research (e.g., Ferron & Levin, 2014; Levin et al., 2018) for both applied and related 

statistical reasons. From an applied perspective, single-case interventionists 

generally have – and should have – well-articulated knowledge about the two 

experimental conditions that they wish to compare, be they an intervention and a 

nonintervention control condition or two different intervention conditions (e.g., 

Horner & Spaulding, 2010; Kazdin, 2011; Kratochwill et al., 2013). Consequently, 

single-case interventionists are positioned to make strong better than or worse than 

predictions regarding their anticipated intervention outcomes. Relatedly, because 

single-case research, by definition, is characterized by small sample sizes and, 

relative to conventional group experimental research is generally inferior with 

respect to statistical power, single-case interventionists are well-advised to conduct 
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directional tests so as to improve their chances of uncovering intervention effects 

that might otherwise have gone undetected (at least from an inferential statistical 

standpoint). 

The results for the present two independent-samples comparative intervention 

effectiveness test are summarized in Tables 1 and 2. These results are 

straightforward and clearly supportive of the new test’s statistical viability, as will 

now be described. 

Type I Error 

The first three configurations of Table 1, for which dX = dY, present outcomes 

reflecting empirical αs. Those obtained values consistently reveal strict control of 

the new test’s αs at or below the specified nominal α of .05, with greater 

conservativeness for the dX = dY = 3 configuration than for the two others. Just to 

be on the safe side, we also examined a selected set of nondirectional (two-tailed) 

test comparisons based on 6 cases and two potential intervention start points. [With 

6 cases and only one potential intervention start point per case, i.e., a total of 20 

possible randomization outcomes, the smallest two-tailed empirical α (or p-value) 

obtainable is 2/20 = .10.] The results duplicated those of the one-tailed test 

comparisons, maintaining Type I error control (all empirical αs ≤ .05) and 

becoming more conservative when dX = dY = 3. 
 
 
Table 1. Type I error rates (based on α = .05, one-tailed) for the “comparative 
intervention effectiveness” test with cases randomly assigned to the two intervention 
conditions, X and Y 
 

    6 Cases  8 Cases 

dX dY ρ SL 1 SP 2 SP 5 SP  1 SP 2 SP 

0 0 0.00 10 0.050 0.051 0.051  0.043 0.049 
   30 0.050 0.051 0.053  0.043 0.051 
  0.30 10 0.050 0.050 0.051  0.043 0.051 
   30 0.050 0.049 0.052  0.042 0.051 

1 1 0.00 10 0.049 0.047 0.044  0.042 0.048 
   30 0.050 0.049 0.048  0.043 0.050 
  0.30 10 0.049 0.047 0.045  0.042 0.048 
   30 0.049 0.050 0.050  0.044 0.049 

3 3 0.00 10 0.049 0.028 0.013  0.042 0.032 
   30 0.050 0.038 0.016  0.041 0.041 
  0.30 10 0.051 0.034 0.020  0.042 0.038 
   30 0.049 0.042 0.029  0.043 0.046 

 

Note: dX = effect size for group X, dY = effect size for group Y; ρ = autocorrelation; SL = series length; 
1, 2, and 5 SP = 1, 2, and 5 potential intervention start points for each case, respectively 



LEVIN ET AL 

11 

Table 2. Power (based on α = .05, one-tailed) for the “comparative intervention 
effectiveness” test with an autocorrelation of ρ = .30 and cases randomly assigned to the 
two intervention conditions, X and Y 
 

   6 Cases  8 Cases 

dX dY SL 1 SP 2 SP 5 SP  1 SP 2 SP 

1 0 10 0.339 0.370 0.385  0.419 0.476 
  30 0.619 0.641 0.667  0.754 0.802 

2 0 10 0.774 0.823 0.844  0.897 0.932 
  30 0.981 0.986 0.991  0.998 0.999 

3 0 10 0.968 0.983 0.989  0.996 0.999 
  30 1.000 1.000 1.000  1.000 1.000 

2 1 10 0.341 0.356 0.355  0.418 0.464 
  30 0.619 0.641 0.648  0.756 0.801 

3 1 10 0.777 0.811 0.813  0.896 0.927 
  30 0.981 0.986 0.990  0.998 1.000 

3 2 10 0.341 0.332 0.288  0.418 0.442 
  30 0.618 0.628 0.628   0.753 0.796 

 

Note: dX = effect size for group X, dY = effect size for group Y; SL = series length; 1, 2, and 5 
SP = 1, 2, and 5 potential intervention start points for each case, respectively 

Power 

Group X was set to benefit more from the introduction of its intervention condition 

than was Group Y (i.e., from its mean B-A increase), and so all powers are 

associated with various X > Y effect sizes. Selected results, based on 6 cases 

equally divided between the two intervention conditions, 1, 2, or 5 potential 

intervention start points per case, and an autocorrelation of ρ = .30, are presented 

in Table 2. [These results are not directly comparable to those of Lall and Levin 

(2004) for Levin and Wampold’s (1999) comparative intervention effectiveness 

test because the present results are based exclusively on immediate abrupt effect 

types, whereas Lall and Levin’s results were averaged across four different effect 

types (viz., immediate abrupt, delayed abrupt, immediate gradual, and delayed 

gradual).] 

As noted in Table 2 for both the 6- and 8-case situations, with a series length 

of 10 observations, the powers for comparative (differential) effect sizes of 1 (i.e., 

dX − dY = 1 − 0, 2 − 1, and 3 − 2) are in the .30s and .40s, and therefore 

inadequate, with the lowest power value of .29 occurring in the 6-case situation for 

the dX − dY = 3 − 2 effect-size difference with 5 potential intervention start points. 

However: (1) with a series length of 30 observations the obtained powers in the .60s 

for the 6-case situation and in the .80s and .90s for the 8-case situation become 

much more reasonable; and (2) for comparative effect sizes of 2 or 3 
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(dX − dY = 2 − 0, 3 − 1, and 3 − 0) – which are not uncommon in single-case 

intervention research (e.g., Ferron et al., 2014; Marquis et al., 2000; Rogers & 

Graham, 2008) – even the 6-case situation powers are in the high .70s, .80s, and .90s. 

(The ds ≥ 1 are representative only of d effect sizes in the published single-single 

case literature.) The powers in Table 2 were generated assuming a fairly 

conservative (from a power perspective) autocorrelation of ρ = 30. When the 

autocorrelation decreases toward 0, all powers in Table 2 increase in a pattern 

comparable to that for ρ = .30. As a few examples based on the 6-case situation and 

2 potential intervention start points per case: (1) with a series length of 10, the 

comparative ρ = 0 and ρ = .30 powers for effect-size differences of 1 − 0, 2 − 1, 

and 3 − 2, respectively, are .50 vs. .37, .47 vs. .36, and .44 vs. .33; and (2) with a 

series length of 30 and the same effect-size differences, they are .85 vs. .64, .85 

vs. .64, and .84 vs. .63. 

General Intervention Effectiveness Test 

The comparative intervention effectiveness test corresponds to a treatment-by-time 

interaction in conventional group design research. Often of additional interest in 

the group design context is the time main effect: that is, whether there is a mean 

change from Time 1 (e.g., pretest) to Time 2 (posttest) averaged across the two 

treatment conditions. Such a test in the present single-case design context is 

available through either the Levin-Wampold (1999) general intervention 

effectiveness test or the equivalent Marascuilo-Busk (1988) replicated AB design 

procedure. Specifically, the test assesses whether there is a change in outcomes 

(here, a change in levels, or means) from the A-to-B phase across the N cases in the 

study (i.e., ignoring the X or Y experimental condition to which the cases were 

assigned). The test yields a total of 

 

 1 2

1

N

N i

i

k k k k
=

   =K   

 

(or kN for equal ki) randomization distribution outcomes as reflected in Step 2 of the 

present comparative intervention effectiveness procedure) – where, again, ki 

represents the number of potential intervention start points for the ith case. The 

general intervention effectiveness test has previously been found both to maintain 

strict Type I error control and to produce acceptable powers for detecting effects of 

typical interest to single-case intervention researchers (e.g., Ferron & Sentovich, 

2002; Lall & Levin, 2004; Levin et al., 2014). 
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Discussion 

It is apparent that our 20-year two independent-samples comparative intervention 

effectiveness randomization-test journey ended not with a whimper but a bang. In 

contrast to the earlier version of the test, the present version consistently maintained 

acceptable Type I error control, while exhibiting adequate power with a total of 6 

cases – and especially with 8 cases – equally divided between two intervention 

conditions, to detect a variety of between-samples intervention effects of moderate 

size (i.e., dX − dY ≥ 2) under reasonably realistic outcome-autocorrelation values 

of .30. Somewhat unexpectedly, and as may appreciated from the Table 2 results, 

the most dramatic power-enhancing factor proved to be the length of the series: 

specifically, as the series length increased from 10 to 30 outcome observations. At 

the same time, certain uncharted territories for the present comparative intervention 

effectiveness randomization test have yet to be fully explored.  

Adaptation to Two Independent-Samples Multiple-Baseline Designs 

Likely among the most appealing to single-case intervention researchers would be 

adapting the present AB-design procedure for application in multiple-baseline 

designs (see, for example, Levin et al., 2018). Encouragingly, the approach reported 

here can be directly imported to a multiple-baseline design by instead of defining a 

common range based on k potential intervention start points for each case, the k 

start points for each case would be systematically staggered in multiple-baseline 

fashion, thereby yielding the same number of possible randomization-test outcomes, 

namely, N! / (NX! NY!) × kN. With ki potential intervention start points for each case, 

this becomes 

 

 
1X Y

!

! !

N

i

i

N
k

N N =

 .  

 

However, the resulting test will provide only a partially complete two-sample 

multiple-baseline analysis because the random assignment of cases to the NX and 

NY levels (or tiers) of the two intervention conditions would not be taken into 

account in the analysis – in contrast to how it is cleverly effected in the multiple-

baseline tier-permutation approach developed by Wampold and Worsham (1986). 

Implementing such “case randomization” (Ferron & Levin, 2014) is an order of 

magnitude more challenging than in the present AB design because it requires, for 

each intervention condition, a consideration of both: (1) the cases’ stagger positions 
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(1 to Np) and (2) the number of potential intervention start points for each case (1 

to Nk), the latter of which increases the number of possible randomization outcomes 

by a factor of (NX! × NY!), bringing the total number of randomization-distribution 

outcomes to N! × kN, or, in general, 

 

 
1

!
N

i

i

N k
=

   

 

(Although the multiple-baseline extension of the two-sample procedure is beyond 

the purview of the current investigation, an assessment of its statistical properties 

is currently underway by the present authors.) 

Connection to Conventional “Group” Randomization and Permutation 

Tests 

With only one fixed intervention start point for each case, the present test is 

equivalent to a conventional group two-sample exact randomization test (with 

random assignment to groups) or permutation test (without random assignment to 

groups) and for large enough sample sizes, to a parametric two-sample t test, when 

applied to the N cases’ B-A mean differences – for related examples and discussion, 

see Ferron & Levin (2014) and Levin (2007). Both tests will be associated with 

N! / (NX! NY!) randomization distribution outcomes. However, adding k potential 

intervention start points for each case to the present procedure increases the number 

of randomization outcomes by a factor of kN, and generally (though not invariably) 

with it the associated statistical power, as is evidenced by the results in Table 2. 

Consideration of the Present Effect Types 

The present mean/level simulations were conducted assuming a stable baseline (A) 

phase for both Groups X and Y, followed by either: (a) a continuing stable 

intervention (B) phase at the same level as baseline for both of the groups; (b) or 

an immediate abrupt B-phase increase in level in either or both of the groups. With 

intervention-phase effects that are delayed or gradual, one can expect the powers 

reported in Table 2 to be lower – and typically, considerably lower (Levin et al., 

2018). However, if in advance a single-case intervention researcher can correctly 

anticipate the nature of these effect types, then specific ameliorative adjusted 

measures can be constructed to lessen the amount of lost power (Levin et al., 2017). 

Of the various effect types previously examined, detecting gradual, rather than 

abrupt, changes in A- to B-phase levels poses the most severe loss-of-power 



LEVIN ET AL 

15 

problems. In addition, a different set of considerations is required if the researcher’s 

focus is on phase-change differences in trend/slope or variability, rather than on 

differences in level (Levin, Ferron, & Gafurov, 2019). 

Caution About Nonrandomly Formed Groups 

The present two independent-samples procedure should not be implemented in 

situations where Groups X and Y are nonrandomly constituted, such as when the 

two groups consist of cases that represent demographic, classification, or status 

variables (e.g., age/grade, gender, ability level) and comparisons of the two groups 

are made on some task or measure (e.g., the comparative effectiveness of an 

instructional intervention for students with and without a learning disability). In 

such instances, including the combinatorial randomized group-formation portion of 

the procedure [viz., N! / (NX! NY!)] is invalid and would result in an 

overdetermination of the legitimate number of possible randomization-distribution 

outcomes. Currently being explored is whether and how our two-group test can be 

adapted for legitimate application in nonrandom-assignment-to-groups contexts. 

Concluding Comments 

The present experimental expedition concludes with a few comments. First, to 

preserve our two independent-samples test’s internal validity, cases must be 

randomly assigned to the study’s administration start times, so as not to confound 

between-condition comparative intervention effectiveness differences with time or 

order differences associated with the intervention conditions. Second, whether our 

two-sample procedure is equally well suited for behaviorally based observational 

designs and cognitively based acquisition designs has yet to be determined. Without 

going into details here, that is because with the latter design types, the random 

assignment of intervention start points to cases within the two conditions could end 

up producing complicated phase-by-content interpretations in the two conditions. 

Third, and as was noted earlier, single-case randomization tests for the paired-case 

variation of the two-intervention design have been developed (Levin & Wampold, 

1999). So too have randomization tests for AB crossover designs (Levin et al., 

2014) and alternating treatment designs, which are both applicable for within-case 

comparisons of different interventions (Levin et al., 2012).Finally, each of these 

tests – including, in particular, the new two independent-samples randomization 

test – can be executed through the freely accessible, downloadable ExPRT (Excel 

Package of Randomization Tests) Version 4.1 statistical software (Gafurov & Levin, 

2020). All told, we these procedures have the potential to be valuable, scientifically 
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credible, and statistically sound design-and-analysis strategies for single-case 

interventionists to consider in their research investigations. 
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