6 research outputs found

    MOCVD Growth and Structural Properties of ZnS Nanowires: A Case Study of Polytypism

    No full text
    International audienceControlling the morphology, orientation, and crystal phase of semiconductor nanowires is crucial for their future applications in nanodevices. In this work, zinc sulfide (ZnS) nanowires have been grown by metalorganic chemical vapor deposition (MOCVD), using gold or gold–gallium alloys as catalyst. At first, basic studies on MOCVD growth regimes (mass-transport, zinc- or sulfur- rich conditions) have been carried out for ZnS thin films. Subsequently, the growth of ZnS nanowires was investigated, as a function of key parameters such as substrate temperature, S/Zn ratio, physical state and composition of the catalyst droplet, and supersaturation. A detailed analysis of the structural properties by transmission electron microscopy (TEM) is given. Depending on the growth conditions, a variety of polytypes is observed: zinc-blende (3C), wurtzite (2H) as well as an uncommon 15R crystal phase. It is demonstrated that twinning superlattices, i.e., 3C structures with periodic twin defects, can be achieved by increasing the Ga concentration of the catalyst. These experimental results are discussed in the light of growth mechanisms reported for semiconductor nanowires. Hence, in this work, the control of ZnS nanowire structural properties appears as a case study for the better understanding of polytypism in semiconductor 1D nanostructures

    Crystal phase selection in semiconductor nanowires

    No full text
    International audienceUnique growth mechanisms involved in semiconductor nanowires (NWs) pave the way to the achievement of new crystallographic phases and remarkable material properties, and hence, studying polytypism in semiconductor NWs arouses a strong interest for the next generation of electronic and photonic applications. Interestingly, in the case of 1D nanostructures, polytypism can occur due to the particular growth mode below a catalyst droplet, that may induce different periodic stacking sequences along the length of the nanowire, giving rise to new phases with distinct properties such as 4H or 6H. In this work, we investigated crystal phases in ZnS NWs as well as in GaAs NWs, comparing two growth mechanisms : VLS mode (vapor-liquid-solid) where the catalyst droplet is liquid, and VSS mode (vapor-solid-solid) where it is solid. Gold-assisted ZnS NWs were first grown by metalorganic chemical vapor deposition (MOCVD), directly on GaAs (111B) substrate (for a VLS mode), and on ZnS (buffer)/GaAs (111B) (VSS mode in that case). TEM analysis revealed that nanowires grown with liquid catalyst exhibit periodic stacking faults, and the resulting structure was accurately identified as 3 sequences of 5 planes ABCBA-BCACB-CABAC, giving rise to an astonishing 15R crystal structure. In contrast, regarding nanowires grown with solid catalyst on ZnS buffer, a different crystal structure made of pure zinc blende and wurtzite phases was observed. In a second study, the growth of GaAs NWs has been investigated in real time using NANOMAX facility, a modified FEI environmental transmission electron microscope, where two molecular beam sources have been implemented to supply Ga and As4 fluxes. Recording movies of the growth, we show again that the physical state of the catalyst droplet changes the crystal phase, from wurtzite (in VLS mode) to zinc blende (VSS)

    Impact of DNMT3a Status on Post Induction NPM1 MRD Predictive Value on Survival in Elderly AML Patients Treated Intensively

    No full text
    International audienceMinimal residual disease (MRD) is now a powerful surrogate marker to assess the response to chemotherapy in acute myeloid leukemia (AML). DNMT3A mutation has been associated with adverse outcomes. In this study, we aimed to investigate the impact of DNMT3A status on NPM1 MRD predictive value for survival in a retrospective cohort of AML patients aged over 60 years old treated intensively. A total of 138 patients treated for NPM1-mutated AML in two French institutions were analyzed retrospectively. DNMT3A status did not influence the probability of having a ≥ 4log MRD1 reduction after induction. Only 20.4% of FLT3-ITD patients reached ≥ 4log MRD1 reduction compared to 47.5% in FLT3wt cases. A 4log reduction of NPM1 MRD was associated with a better outcome, even in FLT3-ITD mutated patients, independent of the allelic ratio. DNMT3A negative patients who reached a 4log reduction had a superior outcome to those who did not (HR = 0.23; p < 0.001). However, postinduction NPM1 MRD1 reduction was not predictive of OS and LFS in DNMT3Amut patients. These results confirm that post-induction NPM1 MRD1 is a reliable tool to assess disease outcome in elderly AML patients. However, the presence of DNMT3A also identifies a subgroup of patients at high risk of relapse

    The Impact of DNMT3A Status on NPM1 MRD Predictive Value and Survival in Elderly AML Patients Treated Intensively

    No full text
    International audienceSimple Summary DNMT3A mutation has been associated with adverse outcomes. In this study, we aimed to investigate the impact of DNMT3A status on NPM1 MRD predictive value for survival in a retrospective cohort of acute myeloid leukemia (AML) patients aged over 60 years old treated intensively. A total of 138 patients treated for NPM1-mutated AML in two French institutions were analyzed retrospectively. A 4log reduction of NPM1 MRD was associated with a better outcome. DNMT3A negative patients who achieved a 4log reduction had a superior outcome to those who did not. However, postinduction NPM1 MRD1 reduction was not predictive of OS and LFS in DNMT3Amut patients. These results confirm that post-induction NPM1 MRD1 is a reliable tool to assess disease outcome in elderly AML patients. However, the presence of DNMT3A also identify a subgroup of patients at high risk of relapse. Minimal residual disease (MRD) is now a powerful surrogate marker to assess the response to chemotherapy in acute myeloid leukemia (AML). DNMT3A mutation has been associated with adverse outcomes. In this study, we aimed to investigate the impact of DNMT3A status on NPM1 MRD predictive value for survival in a retrospective cohort of AML patients aged over 60 years old treated intensively. A total of 138 patients treated for NPM1-mutated AML in two French institutions were analyzed retrospectively. DNMT3A status did not influence the probability of having a >= 4log MRD1 reduction after induction. Only 20.4% of FLT3-ITD patients reached >= 4log MRD1 reduction compared to 47.5% in FLT3wt cases. A 4log reduction of NPM1 MRD was associated with a better outcome, even in FLT3-ITD mutated patients, independent of the allelic ratio. DNMT3A negative patients who reached a 4log reduction had a superior outcome to those who did not (HR = 0.23; p < 0.001). However, postinduction NPM1 MRD1 reduction was not predictive of OS and LFS in DNMT3Amut patients. These results confirm that post-induction NPM1 MRD1 is a reliable tool to assess disease outcome in elderly AML patients. However, the presence of DNMT3A also identifies a subgroup of patients at high risk of relapse

    A new signaling cascade linking BMP4, BMPR1A, ΔNp73 and NANOG impacts on stem-like human cell properties and patient outcome

    No full text
    Abstract In a significant number of cases cancer therapy is followed by a resurgence of more aggressive tumors derived from immature cells. One example is acute myeloid leukemia (AML), where an accumulation of immature cells is responsible for relapse following treatment. We previously demonstrated in chronic myeloid leukemia that the bone morphogenetic proteins (BMP) pathway is involved in stem cell fate and contributes to transformation, expansion, and persistence of leukemic stem cells. Here, we have identified intrinsic and extrinsic dysregulations of the BMP pathway in AML patients at diagnosis. BMP2 and BMP4 protein concentrations are elevated within patients’ bone marrow with a BMP4-dominant availability. This overproduction likely depends on the bone marrow microenvironment, since MNCs do not overexpress BMP4 transcripts. Intrinsically, the receptor BMPR1A transcript is increased in leukemic samples with more cells presenting this receptor at the membrane. This high expression of BMPR1A is further increased upon BMP4 exposure, specifically in AML cells. Downstream analysis demonstrated that BMP4 controls the expression of the survival factor ΔNp73 through its binding to BMPR1A. At the functional level, this results in the direct induction of NANOG expression and an increase of stem-like features in leukemic cells, as shown by ALDH and functional assays. In addition, we identified for the first time a strong correlation between ΔNp73, BMPR1A and NANOG expression with patient outcome. These results highlight a new signaling cascade initiated by tumor environment alterations leading to stem-cell features and poor patients’ outcome

    Post-transplant cyclophosphamide versus anti-thymocyte globulin after reduced intensity peripheral blood allogeneic cell transplantation in recipients of matched sibling or 10/10 HLA matched unrelated donors: final analysis of a randomized, open-label, multicenter, phase 2 trial

    No full text
    Abstract The use of post-transplantation cyclophosphamide (PTCy) for graft-versus-host disease (GVHD) prophylaxis is not established after reduced intensity conditioning (RIC) hematopoietic stem cell transplantation (HSCT) from fully matched donors. This was a randomized, open-label, multicenter, phase 2 trial. All patients received a RIC regimen with fludarabine, intravenous busulfan for 2 days (Flu-Bu2), and a peripheral blood stem cell (PBSC) graft from a matched related or 10/10 HLA-matched unrelated donor. Patients were randomly assigned to receive anti-thymocyte globulin (ATG) 5 mg/kg plus standard GVHD prophylaxis or PTCy 50 mg/kg/d at days +3 and +4 plus standard GVHD prophylaxis. The primary endpoint was the composite endpoint of GVHD- and relapse-free survival (GRFS) at 12 months after HSCT. Eighty-nine patients were randomly assigned to receive either PTCy or control prophylaxis with ATG. At 12 months, disease-free survival was 65.9% in the PTCy group and 67.6% in the ATG group (P = 0.99). Cumulative incidence of relapse, non-relapse mortality, and overall survival were also comparable in the two groups. GRFS at 12 months was 54.5% in the PTCy group versus 43.2% in the ATG group (P = 0.27). The median time to neutrophil and platelet count recovery was significantly longer in the PTCy group compared to the ATG group. Except for day +30, where EORTC QLQ-C30 scores were significantly lower in the PTCy compared to the ATG group, the evolution with time was not different between the two groups. Although the primary objective was not met, PTCy is effective for GVHD prophylaxis in patients receiving Flu-Bu2 conditioning with a PBSC graft from a fully matched donor and was well tolerated in term of adverse events and quality of life. This trial was registered at clinicaltrials.gov: NCT02876679
    corecore