315 research outputs found

    Static and dynamic heterogeneities in a model for irreversible gelation

    Full text link
    We study the structure and the dynamics in the formation of irreversible gels by means of molecular dynamics simulation of a model system where the gelation transition is due to the random percolation of permanent bonds between neighboring particles. We analyze the heterogeneities of the dynamics in terms of the fluctuations of the intermediate scattering functions: In the sol phase close to the percolation threshold, we find that this dynamical susceptibility increases with the time until it reaches a plateau. At the gelation threshold this plateau scales as a function of the wave vector kk as kη−2k^{\eta -2}, with η\eta being related to the decay of the percolation pair connectedness function. At the lowest wave vector, approaching the gelation threshold it diverges with the same exponent γ\gamma as the mean cluster size. These findings suggest an alternative way of measuring critical exponents in a system undergoing chemical gelation.Comment: 4 pages, 4 figure

    Time-resolved microstructural changes in large amplitude oscillatory shear of model single and double component soft gels

    Full text link
    Soft particulate gels can reversibly yield when sufficient deformation is applied, and the characteristics of this transition can be enhanced or limited by designing hybrid hydrogel composites. While the microscopic dynamics and macroscopic rheology of these systems have been studied separately in detail, the development of direct connections between the two has been difficult, particularly with regard to the non-linear rheology. To bridge this gap, we perform a series of large amplitude oscillatory shear (LAOS) numerical measurements on model soft particulate gels at different volume fractions using coarse-grained molecular dynamics simulations. We first study a particulate network with local bending stiffness and then we combine it with a second component that can provide additional crosslinking to obtain two-component networks. Through the sequence of physical processes (SPP) framework we define time-resolved dynamic moduli and, by tracking the changes in these moduli through the period, we can distinguish transitions in the material behavior as a function of time. This approach helps us establish the microsopic origin of the non-linear rheology by connecting the changes in dynamics moduli to the corresponding microstructural changes during the deformation including the non-affine displacement of particles, and the breakage, formation, and orientation of bonds.Comment: 17 pages, 14 figures, submitted to The Journal of Rheolog

    Dynamic heterogeneities in attractive colloids

    Full text link
    We study the formation of a colloidal gel by means of Molecular Dynamics simulations of a model for colloidal suspensions. A slowing down with gel-like features is observed at low temperatures and low volume fractions, due to the formation of persistent structures. We show that at low volume fraction the dynamic susceptibility, which describes dynamic heterogeneities, exhibits a large plateau, dominated by clusters of long living bonds. At higher volume fraction, where the effect of the crowding of the particles starts to be present, it crosses over towards a regime characterized by a peak. We introduce a suitable mean cluster size of clusters of monomers connected by "persistent" bonds which well describes the dynamic susceptibility.Comment: 4 pages, 4 figure

    Static and dynamic heterogeneities in irreversible gels and colloidal gelation

    Full text link
    We compare the slow dynamics of irreversible gels, colloidal gels, glasses and spin glasses by analyzing the behavior of the so called non-linear dynamical susceptibility, a quantity usually introduced to quantitatively characterize the dynamical heterogeneities. In glasses this quantity typically grows with the time, reaches a maximum and then decreases at large time, due to the transient nature of dynamical heterogeneities and to the absence of a diverging static correlation length. We have recently shown that in irreversible gels the dynamical susceptibility is instead an increasing function of the time, as in the case of spin glasses, and tends asymptotically to the mean cluster size. On the basis of molecular dynamics simulations, we here show that in colloidal gelation where clusters are not permanent, at very low temperature and volume fractions, i.e. when the lifetime of the bonds is much larger than the structural relaxation time, the non-linear susceptibility has a behavior similar to the one of the irreversible gel, followed, at higher volume fractions, by a crossover towards the behavior of glass forming liquids.Comment: 9 pages, 3 figure

    Performance of Foundations and Retaining Structures

    Get PDF
    The design, construction, and performance of several building foundations and temporary earth retaining structures located in the downtown area of White Plains, New York are presented in this paper. High rise structures were supported on shallow mat or spread foundations bearing on erratic saturated alluvial silt and sand deposits. Additionally, the construction of two and three level underground parking structures required the use of cantilevered and braced excavation support systems to retain the adjacent streets and utilities. Several assumptions were required to design and predict the performance of the building foundations and retaining structures. The accuracy of these assumptions was verified through the use of precise field measurements during and after construction. The results of these field measurements and comparison with predicted values are presented and discussed

    Reentrant phase diagram and pH effects in cross-linked gelatin gels

    Full text link
    Experimental results have shown that the kinetics of bond formation in chemical crosslinking of gelatin solutions is strongly affected not only by gelatin and reactant concentrations but also by the solution pH. We present an extended numerical investigation of the phase diagram and of the kinetics of bond formation as a function of the pH, via Monte Carlo simulations of a lattice model for gelatin chains and reactant agent in solution. We find a reentrant phase diagram, namely gelation can be hindered either by loop formation, at low reactant concentrations, or by saturation of active sites of the chains via formation of single bonds with crosslinkers, at high reactant concentrations. The ratio of the characteristic times for the formation of the first and of the second bond between the crosslinker and an active site of a chain is found to depend on the reactant reactivity, in good agreement with experimental data.Comment: 8 pages, 8 figure

    Ion specificity of confined ion-water structuring and nanoscale surface forces in clays

    Full text link
    Ion specificity and related Hofmeister effects, ubiquitous in aqueous systems, can have spectacular consequences in hydrated clays, where ion-specific nanoscale surface forces can determine large scale cohesive, swelling and shrinkage behaviors of soil and sediments. We have used a semi-atomistic computational approach and examined sodium, calcium and aluminum counterions confined with water between charged surfaces representative of clay materials, to show that ion-water structuring in nanoscale confinement is at the origin of surface forces between clay particles which are intrinsically ion-specific. When charged surfaces strongly confine ions and water, the amplitude and oscillations of the net pressure naturally emerge from the interplay of electrostatics and steric effects, which can not be captured by existing theories. Increasing confinement and surface charge densities promote ion-water structures that increasingly deviate from the ions' bulk hydration shells, being strongly anisotropic and persistent, and self-organizing into optimized, nearly solid-like assemblies where hardly any free water is left. In these conditions, strongly attractive interactions can prevail between charged surfaces, due to the dramatically reduced dielectric screening of water and the highly organized water-ion structures. By unravelling the ion-specific nature of these nanoscale interactions, we provide evidence that ion-specific solvation structures determined by confinement are at the origin of ion specificity in clays and potentially a broader range of confined aqueous systems.Comment: Main text: 14 pages and 6 figures. Supporting information: 5 figures. Submitted to The Journal of Physical Chemistry

    Kinetics of bond formation in crosslinked gelatin gels

    Full text link
    In chemical crosslinking of gelatin solutions, two different time scales affect the kinetics of the gel formation in the experiments. We complement the experimental study with Monte Carlo numerical simulations of a lattice model. This approach shows that the two characteristic time scales are related to the formation of single bonds crosslinker-chain and of bridges between chains. In particular their ratio turns out to control the kinetics of the gel formation. We discuss the effect of the concentration of chains. Finally our results suggest that, by varying the probability of forming bridges as an independent parameter, one can finely tune the kinetics of the gelation via the ratio of the two characteristic times.Comment: 8 pages, 9 figures, revised versio

    Viscoelasticity near the gel-point: a molecular dynamics study

    Full text link
    We report on extensive molecular dynamics simulations on systems of soft spheres of functionality f, i.e. particles that are capable of bonding irreversibly with a maximum of f other particles. These bonds are randomly distributed throughout the system and imposed with probability p. At a critical concentration of bonds, p_c approximately equal to 0.2488 for f=6, a gel is formed and the shear viscosity \eta diverges according to \eta ~ (p_c-p)^{-s}. We find s is approximately 0.7 in agreement with some experiments and with a recent theoretical prediction based on Rouse dynamics of phantom chains. The diffusion constant decreases as the gel point is approached but does not display a well-defined power law.Comment: 4 pages, 4 figure

    Columnar and lamellar phases in attractive colloidal systems

    Full text link
    In colloidal suspensions, the competition between attractive and repulsive interactions gives rise to a rich and complex phenomenology. Here, we study the equilibrium phase diagram of a model system using a DLVO interaction potential by means of molecular dynamics simulations and a thermodynamical approach. As a result, we find tubular and lamellar phases at low volume fraction. Such phases, extremely relevant for designing new materials, may be not easily observed in the experiments because of the long relaxation times and the presence of defects.Comment: 5 pages, 5 figure
    • …
    corecore