161 research outputs found

    Pi-Molecular dielectric layer for organic thin film diode

    Full text link
    Very thin (1.2-2.5nm) self-assembled organic dielectric monolayers have been integrated into organic thin-film diode to achieve electrical characteristics. These dielectrics are fabricated by self-assembling deposition, resulting in smooth, strongly adherent, thermally stable, organosiloxane thin films having interesting electrical capacitances (around 150 nF cm-2 at -3V) and insulating properties (leakage current densities around 10-5 A cm2 at -1V).Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Steroid hormone signaling is involved in the age-dependent behavioral response to sex pheromone in the adult male moth Agrotis ipsilon

    Get PDF
    In most animals, including insects, male reproduction depends on the detection and processing of female-produced sex pheromones. In the male moth, Agrotis ipsilon, both behavioral response and neuronal sensitivity in the primary olfactory center, the antennal lobe (AL), to female sex pheromone are age- and hormone-dependent. In many animal species, steroids are known to act at the brain level to modulate the responsiveness to sexually relevant chemical cues. We aimed to address the hypothesis that the steroidal system and in particular 20-hydroxyecdysone (20E), the main insect steroid hormone, might also be involved in this olfactory plasticity. Therefore, we first cloned the nuclear ecdysteroid receptor EcR (AipsEcR) and its partner Ultraspiracle (AipsUSP) of A. ipsilon, the expression of which increased concomitantly with age in ALs. Injection of 20E into young sexually immature males led to an increase in both responsiveness to sex pheromone and amount of AipsEcR and AipsUSP in their ALs. Conversely, the behavioral response decreased in older, sexually mature males after injection of cucurbitacin B (CurB), an antagonist of the 20E/EcR/USP complex. Also, the amount of AipsEcR and AipsUSP significantly declined after treatment with CurB. These results suggest that 20E is involved in the expression of sexual behavior via the EcR/USP signaling pathway, probably acting on central pheromone processing in A. ipsilon

    The transcription factor Kruppel homolog 1 is linked to the juvenile hormone-dependent maturation of sexual behavior in the male moth, Agrotis ipsilon

    Get PDF
    In the male moth, Agrotis ipsilon, the behavioral response and neuronal sensitivity in the primary olfactory center, the antennal lobe (AL), to sex pheromone increase with age and juvenile hormone (JH) biosynthesis. Although JH has been shown to control this age-dependent plasticity, the underlying signaling pathway remains obscure. In this context, we cloned a full cDNA encoding the Kruppel homolog 1 transcription factor (AipsKr-h1) of A. ipsilon, which was found to be predominantly expressed in ALs, where its amount increased concomitantly with age and sex pheromone responses. Conversely, the expression of AipsKr-h1 protein in the antenna was age-independent. Moreover, the administration of JH in immature males or fluvastatin, an inhibitor of JH biosynthesis, in mature males induced an increase or a decline of the AipsKr-h1 protein level in ALs, respectively. This effect was suppressed with a combined injection of fluvastatin and JH. Our results showed that Aipskr-h1 is a JH-upregulated gene that might mediate JH action on central pheromone processing, modulating sexual behavior in A. ipsilon

    Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect

    Get PDF
    Most animals including insects rely on olfaction to find their mating partners. In moths, males are attracted by female-produced sex pheromones inducing stereotyped sexual behavior. The behaviorally relevant olfactory information is processed in the primary olfactory centre, the antennal lobe (AL). Evidence is now accumulating that modulation of sex-linked behavioral output occurs through neuronal plasticity via the action of hormones and/or catecholamines. A G-protein-coupled receptor (GPCR) binding to 20-hydroxyecdysone, the main insect steroid hormone, and dopamine, has been identified in Drosophila (DmDopEcR), and was suggested to modulate neuronal signaling. In the male moth Agrotis ipsilon, the behavioral and central nervous responses to pheromone are age-dependent. To further unveil the mechanisms of this olfactory plasticity, we searched for DopEcR and tested its potential role in the behavioral response to sex pheromone in A. ipsilon males. Our results show that A. ipsilon DopEcR (named AipsDopEcR) is predominantly expressed in the nervous system. The corresponding protein was detected immunohistochemically in the ALs and higher brain centers including the mushroom bodies. Moreover, AipsDopEcR expression increased with age. Using a strategy of RNA interference, we also show that silencing of AipsDopEcR inhibited the behavioral response to sex pheromone in wind tunnel experiments. Altogether our results indicate that this GPCR is involved in the expression of sexual behavior in the male moth, probably by modulating the central nervous processing of sex pheromone through the action of one or both of its ligands
    • …
    corecore