1,028 research outputs found

    Nuclear Astrophysics with Radioactive Beams

    Full text link
    The quest to comprehend how nuclear processes influence astrophysical phenomena is driving experimental and theoretical research programs worldwide. One of the main goals in nuclear astrophysics is to understand how energy is generated in stars, how elements are synthesized in stellar events and what the nature of neutron stars is. New experimental capabilities, the availability of radioactive beams and increased computational power paired with new astronomical observations have advanced the present knowledge. This review summarizes the progress in the field of nuclear astrophysics with a focus on the role of indirect methods and reactions involving beams of rare isotopes.Comment: 121 pages, 27 figures, 510 references, to appear in Physics Reports. Minor typos and references fixe

    Is the structure of 42Si understood?

    Get PDF
    A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier comparisons of excited-state energies -- is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying \nuc{42}{Si}(21+2^+_1) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from \nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the individual \nuc{42}{Si} final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0+0^+ states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the (02+0^+_2) level.Comment: accepted in Physical Review Letter

    Delay-induced Synchronization Phenomena in an Array of Globally Coupled Logistic Maps

    Get PDF
    We study the synchronization of a linear array of globally coupled identical logistic maps. We consider a time-delayed coupling that takes into account the finite velocity of propagation of the interactions. We find globally synchronized states in which the elements of the array evolve along a periodic orbit of the uncoupled map, while the spatial correlation along the array is such that an individual map sees all other maps in his present, current, state. For values of the nonlinear parameter such that the uncoupled maps are chaotic, time-delayed mutual coupling suppress the chaotic behavior by stabilizing a periodic orbit which is unstable for the uncoupled maps. The stability analysis of the synchronized state allows us to calculate the range of the coupling strength in which global synchronization can be obtained.Comment: 8 pages, 7 figures, changed content, added reference

    Griffiths effects and quantum critical points in dirty superconductors without spin-rotation invariance: One-dimensional examples

    Get PDF
    We introduce a strong-disorder renormalization group (RG) approach suitable for investigating the quasiparticle excitations of disordered superconductors in which the quasiparticle spin is not conserved. We analyze one-dimensional models with this RG and with elementary transfer matrix methods. We find that such models with broken spin rotation invariance {\it generically} lie in one of two topologically distinct localized phases. Close enough to the critical point separating the two phases, the system has a power-law divergent low-energy density of states (with a non-universal continuously varying power-law) in either phase, due to quantum Griffiths singularities. This critical point belongs to the same infinite-disorder universality class as the one dimensional particle-hole symmetric Anderson localization problem, while the Griffiths phases in the vicinity of the transition are controlled by lines of strong (but not infinite) disorder fixed points terminating in the critical point.Comment: 14 pages (two-column PRB format), 9 eps figure

    Spectral and Transport Properties of d-Wave Superconductors With Strong Impurities

    Full text link
    One of the remarkable features of disordered d-wave superconductors is strong sensitivity of long range properties to the microscopic realization of the disorder potential. Particularly rich phenomenology is observed for the -- experimentally relevant -- case of dilute distributions of isolated impurity centers. Building on earlier diagrammatic analyses, the present paper derives and analyses a low energy effective field theory of this system. Specifically, the results of previous diagrammatic T-matrix approaches are extended into the perturbatively inaccessible low energy regimes, and the long range (thermal) transport behaviour of the system is discussed. It turns out that in the extreme case of a half-filled tight binding band and infinitely strong impurities (impurities at the unitary limit), the system is in a delocalized phase.Comment: 14 pages, two figures include

    Spectroscopy of 35^{35}P using the one-proton knockout reaction

    Get PDF
    The structure of 35^{35}P was studied with a one-proton knockout reaction at88~MeV/u from a 36^{36}S projectile beam at NSCL. The γ\gamma rays from thedepopulation of excited states in 35^{35}P were detected with GRETINA, whilethe 35^{35}P nuclei were identified event-by-event in the focal plane of theS800 spectrograph. The level scheme of 35^{35}P was deduced up to 7.5 MeV usingγγ\gamma-\gamma coincidences. The observed levels were attributed to protonremovals from the sdsd-shell and also from the deeply-bound p_1/2p\_{1/2} orbital.The orbital angular momentum of each state was derived from the comparisonbetween experimental and calculated shapes of individual (γ\gamma-gated)parallel momentum distributions. Despite the use of different reactions andtheir associate models, spectroscopic factors, C2SC^2S, derived from the36^{36}S (1p)(-1p) knockout reaction agree with those obtained earlier from36^{36}S(dd,\nuc{3}{He}) transfer, if a reduction factor R_sR\_s, as deducedfrom inclusive one-nucleon removal cross sections, is applied to the knockout transitions.In addition to the expected proton-hole configurations, other states were observedwith individual cross sections of the order of 0.5~mb. Based on their shiftedparallel momentum distributions, their decay modes to negative parity states,their high excitation energy (around 4.7~MeV) and the fact that they were notobserved in the (dd,\nuc{3}{He}) reaction, we propose that they may resultfrom a two-step mechanism or a nucleon-exchange reaction with subsequent neutronevaporation. Regardless of the mechanism, that could not yet be clarified, thesestates likely correspond to neutron core excitations in \nuc{35}{P}. Thisnewly-identified pathway, although weak, offers the possibility to selectivelypopulate certain intruder configurations that are otherwise hard to produceand identify.Comment: 5 figures, 1 table, accepted for publication in Physical Review
    corecore