56 research outputs found

    Editor\u27s Preface and Table of Contents

    Get PDF
    These proceedings contain papers presented in the twentieth annual Kansas State University Conference on Applied Statistics in Agriculture, held in Manhattan, Kansas, April 27- April 29, 2008

    Editor\u27s Preface and Table of Contents

    Get PDF
    These proceedings contain papers presented in the twenty-first annual Kansas State University Conference on Applied Statistics in Agriculture, held in Manhattan, Kansas, April 19 - April 21, 2009

    TREATMENT HETEROGENEITY AND POTENTIAL OUTCOMES IN LINEAR MIXED EFFECTS MODELS

    Get PDF
    Studies commonly focus on estimating a mean treatment effect in a population. However, in some applications the variability of treatment effects across individual units may help to characterize the overall effect of a treatment across the population. Consider a set of treatments, {T,C}, where T denotes some treatment that might be applied to an experimental unit and C denotes a control. For each of N experimental units, the duplet {rTᵢ,rCᵢ}, i = 1,2, … , N, represents the potential response of the i th experimental unit if treatment were applied and the response of the experimental unit if control were applied, respectively. The causal effect of T compared to C is the difference between the two potential responses, rTᵢ - rCᵢ. Much work has been done to elucidate the statistical properties of a causal effect, given a set of particular assumptions. Gadbury and others have reported on this for some simple designs and primarily focused on finite population randomization based inference. When designs become more complicated, the randomization based approach becomes increasingly difficult. Since linear mixed effects models are particularly useful for modeling data from complex designs, their role in modeling treatment heterogeneity is investigated. It is shown that an individual treatment effect can be conceptualized as a linear combination of fixed treatment effects and random effects. The random effects are assumed to have variance components specified in a mixed effects “potential outcomes” model when both potential outcomes, rT, rC, are variables in the model. The variance of the individual causal effect is used to quantify treatment heterogeneity. Post treatment assignment, however, only one of the two potential outcomes is observable for a unit. It is then shown that the variance component for treatment heterogeneity becomes non-estimable in an analysis of observed data. Furthermore, estimable variance components in the observed data model are demonstrated to arise from linear combinations of the non-estimable variance components in the potential outcomes model. Mixed effects models are considered in context of a particular design in an effort to illuminate the loss of information incurred when moving from a potential outcomes framework to an observed data analysis

    EXPLORATION OF REACTANT-PRODUCT LIPID PAIRS IN MUTANT-WILD TYPE LIPIDOMICS EXPERIMENTS

    Get PDF
    High-throughput metabolite analysis is very important for biologists to identify the functions of genes. A mutation in a gene encoding an enzyme is expected to alter the level of the metabolites which serve as the enzyme’s reactant(s) (also known as substrate) and product(s). To find the function of a mutated gene, metabolite data from a wild-type organism and a mutant are compared and candidate reactants and products are identified. The screening principle is that the concentration of reactants will be higher and the concentration of products will be lower in the mutant than in wild type. This is because the mutation reduces the reaction between the reactant and the product in the mutant organism. Based upon this principle, we suggest a method to screen metabolite pairs for candidate reactant-product pairs. Metrics are defined that quantify the effect of a mutation on each potential reaction, represented by a metabolite pair. For reactions catalyzed by well-characterized enzymes, one or more biologically functioning reactant-product pairs are known. Knowledge of the functional reactant-product pairs informs the development of the metrics. The goal is for ranking of the metrics for all possible pairs to reflect the likelihood that a particular metabolite pair is a functional reactant-product pair

    The PowerAtlas: a power and sample size atlas for microarray experimental design and research

    Get PDF
    BACKGROUND: Microarrays permit biologists to simultaneously measure the mRNA abundance of thousands of genes. An important issue facing investigators planning microarray experiments is how to estimate the sample size required for good statistical power. What is the projected sample size or number of replicate chips needed to address the multiple hypotheses with acceptable accuracy? Statistical methods exist for calculating power based upon a single hypothesis, using estimates of the variability in data from pilot studies. There is, however, a need for methods to estimate power and/or required sample sizes in situations where multiple hypotheses are being tested, such as in microarray experiments. In addition, investigators frequently do not have pilot data to estimate the sample sizes required for microarray studies. RESULTS: To address this challenge, we have developed a Microrarray PowerAtlas [1]. The atlas enables estimation of statistical power by allowing investigators to appropriately plan studies by building upon previous studies that have similar experimental characteristics. Currently, there are sample sizes and power estimates based on 632 experiments from Gene Expression Omnibus (GEO). The PowerAtlas also permits investigators to upload their own pilot data and derive power and sample size estimates from these data. This resource will be updated regularly with new datasets from GEO and other databases such as The Nottingham Arabidopsis Stock Center (NASC). CONCLUSION: This resource provides a valuable tool for investigators who are planning efficient microarray studies and estimating required sample sizes

    HDBStat!: A platform-independent software suite for statistical analysis of high dimensional biology data

    Get PDF
    BACKGROUND: Many efforts in microarray data analysis are focused on providing tools and methods for the qualitative analysis of microarray data. HDBStat! (High-Dimensional Biology-Statistics) is a software package designed for analysis of high dimensional biology data such as microarray data. It was initially developed for the analysis of microarray gene expression data, but it can also be used for some applications in proteomics and other aspects of genomics. HDBStat! provides statisticians and biologists a flexible and easy-to-use interface to analyze complex microarray data using a variety of methods for data preprocessing, quality control analysis and hypothesis testing. RESULTS: Results generated from data preprocessing methods, quality control analysis and hypothesis testing methods are output in the form of Excel CSV tables, graphs and an Html report summarizing data analysis. CONCLUSION: HDBStat! is a platform-independent software that is freely available to academic institutions and non-profit organizations. It can be downloaded from our website

    Results of soy-based meal replacement formula on weight, anthropometry, serum lipids & blood pressure during a 40-week clinical weight loss trial

    Get PDF
    BACKGROUND: To evaluate the intermediate-term health outcomes associated with a soy-based meal replacement, and to compare the weight loss efficacy of two distinct patterns of caloric restriction. METHODS: Ninety overweight/obese (28 < BMI ≤ 41 kg/m(2)) adults received a single session of dietary counseling and were randomized to either 12 weeks at 1200 kcal/day, 16 weeks at 1500 kcal/d and 12 weeks at 1800 kcal/d (i.e., the 12/15/18 diet group), or 28 weeks at 1500 kcal/d and 12 weeks at 1800 kcal/d (i.e., the 15/18 diet group). Weight, body fat, waist circumference, blood pressure and serum lipid concentrations were measured at 4-week intervals throughout the 40-week trial. RESULTS: Subjects in both treatments showed statistically significant improvements in outcomes. A regression model for weight change suggests that subjects with larger baseline weights tended to lose more weight and subjects in the 12/15/18 group tended to experience, on average, an additional 0.9 kg of weight loss compared with subjects in the 15/18 group. CONCLUSION: Both treatments using the soy-based meal replacement program were associated with significant and comparable weight loss and improvements on selected health variables

    Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection

    Get PDF
    Citation: Udukala, D. N., Wang, H. W., Wendel, S. O., Malalasekera, A. P., Samarakoon, T. N., Yapa, A. S., . . . Bossmann, S. H. (2016). Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection. Beilstein Journal of Nanotechnology, 7, 364-373. doi:10.3762/bjnano.7.33Additional Authors: Ortega, R.;Toledo, Y.;Bossmann, L.;Robinson, C.;Janik, K. E.;Koper, O. B.;Motamedi, M.;Zhu, G. H.Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl) porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis

    Evaluating Statistical Methods Using Plasmode Data Sets in the Age of Massive Public Databases: An Illustration Using False Discovery Rates

    Get PDF
    Plasmode is a term coined several years ago to describe data sets that are derived from real data but for which some truth is known. Omic techniques, most especially microarray and genomewide association studies, have catalyzed a new zeitgeist of data sharing that is making data and data sets publicly available on an unprecedented scale. Coupling such data resources with a science of plasmode use would allow statistical methodologists to vet proposed techniques empirically (as opposed to only theoretically) and with data that are by definition realistic and representative. We illustrate the technique of empirical statistics by consideration of a common task when analyzing high dimensional data: the simultaneous testing of hundreds or thousands of hypotheses to determine which, if any, show statistical significance warranting follow-on research. The now-common practice of multiple testing in high dimensional experiment (HDE) settings has generated new methods for detecting statistically significant results. Although such methods have heretofore been subject to comparative performance analysis using simulated data, simulating data that realistically reflect data from an actual HDE remains a challenge. We describe a simulation procedure using actual data from an HDE where some truth regarding parameters of interest is known. We use the procedure to compare estimates for the proportion of true null hypotheses, the false discovery rate (FDR), and a local version of FDR obtained from 15 different statistical methods
    • …
    corecore