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TREATMENT HETEROGENEITY AND POTENTIAL OUTCOMES IN LINEAR MIXED 
EFFECTS MODELS 

 
Troy E. Richardson and Gary L. Gadbury 

Department of Statistics, Kansas State University, Manhattan, KS 66506 
 

 
Abstract 

Studies commonly focus on estimating a mean treatment effect in a population. However, 
in some applications the variability of treatment effects across individual units may help to 
characterize the overall effect of a treatment across the population.  Consider a set of treatments, 
{T,C}, where T denotes some treatment that might be applied to an experimental unit and  C 
denotes a control. For each of 𝑁𝑁 experimental units, the duplet {𝑟𝑟𝑇𝑇𝑇𝑇 ,𝑟𝑟𝐶𝐶𝐶𝐶}, 𝑖𝑖 = 1,2, … ,𝑁𝑁, 
represents the potential response of the 𝑖𝑖th experimental unit if treatment were applied and the 
response of the experimental unit if control were applied, respectively.  The causal effect of T 
compared to C is the difference between the two potential responses,𝑟𝑟𝑇𝑇𝑇𝑇 −  𝑟𝑟𝐶𝐶𝐶𝐶 .Much work has 
been done to elucidate the statistical properties of a causal effect, given a set of particular 
assumptions.  Gadbury and others have reported on this for some simple designs and primarily 
focused on finite population randomization based inference. When designs become more 
complicated, the randomization based approach becomes increasingly difficult.  

Since linear mixed effects models are particularly useful for modeling data from complex 
designs, their role in modeling treatment heterogeneity is investigated.  It is shown that an 
individual treatment effect can be conceptualized as a linear combination of fixed treatment 
effects and random effects.  The random effects are assumed to have variance components 
specified in a mixed effects “potential outcomes” model when both potential outcomes, 𝑟𝑟𝑇𝑇 , 𝑟𝑟𝐶𝐶 , 
are variables in the model. The variance of the individual causal effect is used to quantify 
treatment heterogeneity. Post treatment assignment, however, only one of the two potential 
outcomes is observable for a unit. It is then shown that the variance component for treatment 
heterogeneity becomes non-estimable in an analysis of observed data.  Furthermore, estimable 
variance components in the observed data model are demonstrated to arise from linear 
combinations of the non-estimable variance components in the potential outcomes model.  
Mixed effects models are considered in context of a particular design in an effort to illuminate 
the loss of information incurred when moving from a potential outcomes framework to an 
observed data analysis. 

 
Key words:  treatment heterogeneity, potential outcomes, subject-treatment interaction, mixed 

effects 
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1. Introduction 
 Treatment heterogeneity refers to the variability of a treatment effect across individuals in 
a population.The term treatment effect implies a comparison of one level of treatment against 
another.  To state that a treatment effect varies across individuals implies that this comparison of 
treatment levels is made within an individual.  Although, such variability has often been 
acknowledged as an important consideration in the application of experimental findings to 
prospective individual experimental units (EU), decisions about the use of treatment in EU’s 
generally make use of statistical information gathered about the average or mean effect and then 
apply that same information to theindividual (cf. Marshall, 1997).It should be noted, however, 
that the estimated mean effect may be misleading when the effect of a treatment varies widely 
across individuals.  If individual treatment variation is large with respect to the mean, then there 
may exist subpopulations in which a control produces a more favorable response compared with 
treatment even though the treatment appears to produce a more favorable response on average 
across the entire population.  Standard analyses are unable to detect the existence of such 
subpopulations since individual treatment variability is confounded with experimental error in 
these standard designs. This paper explores issues that arise when estimating a variance of 
individual treatment effects. This variance serves to quantify the degree of treatment 
heterogeneity in a population. Results reported here should be useful for applications where 
estimatingthis variance, in addition to estimating a mean effect,may be of interest.  
 The analyses of many fundamental experimental designspreclude the identification and 
estimation of treatment heterogeneity.For those designs that permit a subject-by-treatment effect 
in the LM or LMM, a number of ways have been proposed to handle treatment heterogeneity.  
Wilk and Kempthorne (1955) modeled a subject-by-treatment effect as a fixed effect.  First, they 
assumed a value of zero for the fixed subject-by-treatment effect in all subjects and all treatment 
combinations.  Subsequent analyses assumed that the sum of fixed subject-by-treatment effects 
over all units in a population receiving a particular treatment combination was zero.  Ghosh and 
Crosby (2005) utilized clustering techniques in a cross-over design to generate subgroups which 
they then considered replicates of one “subject” in order to estimate differences in subject-by-
treatment effects.  Kramer et al. (2011) presented a method in which they subtracted the 
estimated fixed effects from the observations in a cross-over design and applied principle 
component analysis to residualsso as to isolate a subject-by-treatment effect. 
 Gadbury and others (e.g., Gadbury and Iyer, 2000; Gadbury et al., 2001) defined a 
variance that quantified a degree of treatment heterogeneity, calling it subject-treatment (S-T) 
interaction, and then considered the issues involved when estimating this variance. Some of these 
results were summarized in Gadbury (2010). In these works, details were presented concerning a 
two-sample CRD with a covariate. They showed that the S-T variance is not directly estimable in 
most designs without assumptions, but bounds for it can be estimated. Many methods that 
estimate a variance associated with treatment heterogeneity are actually evaluating observable 
consequences of treatment heterogeneity (e.g., variability across subsets of a population).  Other 
approachesmay make assumptions that are not verifiable in observable data. For example, one 
such assumption would be that an observable individual treatment effect in a cross-over design is 
equal to the true individual effect of treatment. The issues involved with making this type of 
assumption were recently discussed in Poulson et al. (2012).In Gadbury et al., (2003) a matched-
pairs design was considered where outcomes were binary and in Albert et al. (2004) a blocked 
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design with binary outcomes was considered. The latter paper produced nonparametric estimates 
in a randomization based framework. For continuous outcomes, results for estimating individual 
treatment heterogeneity in designs beyond a two-sample CRD were derived in the context of 
finite population, randomization-based inference. This was done for a matched-pairs design and 
a balanced two-period-two treatment cross-over design (see Gadbury, 2010, for a summary of 
some results). 
 Randomization techniques for deriving estimators for an S-T variance become 
increasingly intractable as designs become more complex. This paper reconsiders results from 
Gadbury and others in the context of a linear mixed effects modeling framework. Such models 
are especially useful for modeling data from complex experiments. As such, their use for 
evaluating treatment heterogeneity seems especially attractive and will allow such evaluation in 
contexts far broader than those considered thus far.  
 Our approach here first considers a potential outcomes (Rubin 1974) analysis of data 
from a typical design using a LMMto help elucidate the role of treatment heterogeneity in a 
statistical analysis.   In the following two sectionswe(i) develop a potential outcomes LMM-
based approach, (ii) provide principles for relating the potential LMM to the “usual” observable 
LMM in a CRD and matched-pairs settings that can easily be extended to more complex 
situations, and (iii) present specific results in detail for the matched-pairs case. Then in Section 4, 
we quantify the relationship between the potential LMM and observable LMM using both a 
constructed data example and simulation,andthen discuss the required assumptions to equate the 
potential LMM and the observable LMM.  A comparison of the two models quickly reveal 
components associated with treatment heterogeneity that are estimable in the potential LMMbut 
not in the observable LMM, at least not without non-trivial assumptions.  Deriving the model for 
both observable data and potential outcomes data in any particular experimental design where 
treatment heterogeneity is of interest may help facilitatean understanding of the degree to which 
treatment heterogeneity can be evaluated in observable data.  
 
2. Treatment Heterogeneity or S-T Interaction 
Potential Outcomes 
 Consider a set of treatments, {𝑇𝑇,𝐶𝐶}, where 𝑇𝑇 denotes some treatment that might be 
applied to an EU and  𝐶𝐶 denotes a control that also might be applied to an EU. It is certainly 
plausible to extend these ideas to more than two levels of treatment, but for the purpose of this 
paper, we restrict ourselves to only 𝑇𝑇 and 𝐶𝐶.  For each EU, imagine the existence of a duplet 
{𝑟𝑟𝑇𝑇𝑇𝑇 ,𝑟𝑟𝐶𝐶𝐶𝐶}, which represents the potential response of the 𝑖𝑖𝑡𝑡ℎ  EUif treatment were applied and the 
response of the 𝑖𝑖𝑡𝑡ℎ  EUif control were applied, respectively.  Notice that it is important to use 
terminology such as “imagine”, “consider”, or “conceptualize” when discussing potential 
outcomes as it is impossible to simultaneously observe all potential outcomes for a given 
experimental unit at a particular time.  This constraint of a potential outcomes framework has 
been called the fundamental problem of causal inference. (Holland, 1986) 
 Though it is not possible to simultaneously observe both of these potential responses, the 
potential outcomes framework facilitates the definition of the true causal effectortrue individual 
differenceof 𝑇𝑇 compared with𝐶𝐶 of the 𝑖𝑖𝑡𝑡ℎ  EU, denoted 𝑑𝑑𝑖𝑖 ,as  
 

𝑑𝑑𝑖𝑖 = 𝑟𝑟𝑇𝑇𝑇𝑇 − 𝑟𝑟𝐶𝐶𝐶𝐶 .                                                                        (1) 
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 If 𝑑𝑑 varies across EU’s in a population—i.e. 𝑣𝑣𝑣𝑣𝑣𝑣(𝑑𝑑) > 0—then treatment heterogeneity 
exists.  It is the variance of these individual effects that quantifies the degree of S-T interaction. 
Note that this variance cannot be directly estimated using observable data because of the 
fundamental problem of causal inference. 
 
Observable Outcomes and the Randomization Mechanism 
 As noted above, only one potential response may be observed for a given EU at a given 
time.  We suppose random chance selects the observable responses from the potential 
responses.Define a random indicator variable,𝑍𝑍𝑖𝑖  , such that 
 

𝑍𝑍𝑖𝑖 = � 1, 𝑖𝑖𝑖𝑖 𝑖𝑖𝑡𝑡ℎ  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑇𝑇
 0, 𝑖𝑖𝑖𝑖 𝑖𝑖𝑡𝑡ℎ  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐶𝐶 

� 

 
Define the observable outcome of the 𝑖𝑖𝑡𝑡ℎ  experimental unit, 𝑅𝑅𝑖𝑖 , as follows: 
 

𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑇𝑇𝑇𝑇 ∙ 𝑍𝑍𝑖𝑖 + 𝑟𝑟𝐶𝐶𝐶𝐶 ∙ (1 − 𝑍𝑍𝑖𝑖) 
 
where 𝑟𝑟𝑇𝑇𝑖𝑖  and 𝑟𝑟𝐶𝐶𝑖𝑖  are the potential responses of the 𝑖𝑖𝑡𝑡ℎ  experimental  unit.  In potential outcomes 
literature, the probability distribution of𝑍𝑍𝑖𝑖  is referred to as the randomization mechanism.Once 
the samples have been selected, define the usual mean difference using the observable outcomes 
 

𝐷𝐷� = 𝑅𝑅�𝑇𝑇∙ − 𝑅𝑅�𝐶𝐶∙ =
1
𝑛𝑛𝑇𝑇

�𝑟𝑟𝑇𝑇𝑇𝑇

𝑁𝑁

𝑖𝑖=1

∙ 𝑍𝑍𝑖𝑖 −
1
𝑛𝑛𝐶𝐶
�𝑟𝑟𝐶𝐶𝐶𝐶

𝑁𝑁

𝑖𝑖=1

(1 − 𝑍𝑍𝑖𝑖) 

 
where 𝑅𝑅�𝑇𝑇∙ is the arithmetic average of the𝑛𝑛𝑇𝑇  responses for those units whose potential response 
under 𝑇𝑇 was selected to be observed and 𝑅𝑅�𝐶𝐶∙ is the arithmetic average of the𝑛𝑛𝐶𝐶  responses of 
those units whose potential response under 𝐶𝐶 was selected to be observed.  We distinguish𝐷𝐷�from 
the true individual causal effect given in (1) by referring to𝐷𝐷�as the naïve difference or the naïve 
effect. If, for example, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑑𝑑) = 0, then this naïve effect would be a good surrogate (and a good 
estimate with a random assignment mechanism) for a constant true effect.  
 Comparison of an individual quantity, like 𝑑𝑑𝑖𝑖 , with a quantity summarizing a group of 
individuals, such as 𝐷𝐷�, may not be valid when individual effects vary.  In some designs it may be 
possible to define related quantities to facilitate a reasonable comparison of the true causal effect 
and the naïve effect.  For example, in a matched-pairsdesignas considered in this paper, the naïve 
paired difference in the 𝑖𝑖𝑡𝑡ℎpair is 
 

𝐷𝐷𝑖𝑖 = 𝑅𝑅𝑇𝑇𝑇𝑇 − 𝑅𝑅𝐶𝐶𝑖𝑖 . 
 
In this case, 𝐷𝐷𝑖𝑖  may be thought of as a naïve version of the true, individual causal effect for the 
two units in the 𝑖𝑖𝑡𝑡ℎ  pair, which here would be given by 𝑑𝑑𝑖𝑖1and 𝑑𝑑𝑖𝑖2. 
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Statistical Propertiesof Potential Outcomes 
 In the potential outcomes framework, we conceptualize the experimental process as the 
selection of a finite set of duplets (F) from an infinite population of duplets (Ω).  Each duplet 
contains the set of potential responses for an EU.  A randomization mechanism is then employed 
to the duplets in Fto select the observable response from the potential responses.  As in the 
“usual” experimental setting, the end result is a collection of 𝑛𝑛𝑇𝑇  EU’s receiving 𝑇𝑇 and 𝑛𝑛𝐶𝐶  EU’s 
receiving𝐶𝐶.From an infinite population perspective, the duplets are independent of one another, 
and the potential responses within a duplet follow the following joint distribution: 
 

�
𝑟𝑟𝑇𝑇𝑇𝑇
𝑟𝑟𝐶𝐶𝐶𝐶�~ ��

𝜇𝜇𝑇𝑇
𝜇𝜇𝐶𝐶� , �

𝜎𝜎𝑇𝑇2 𝜌𝜌 ∙ 𝜎𝜎𝑇𝑇𝜎𝜎𝐶𝐶
𝜌𝜌 ∙ 𝜎𝜎𝑇𝑇𝜎𝜎𝐶𝐶 𝜎𝜎𝐶𝐶2

��                                                    (2) 

 
It should be expected that the two potential responses are correlated as they are potential 
responses of the same individual under different treatment conditions.  The correlation, however, 
is non-estimable due to the fundamental problem of causal inference. 
 Much work has been done to elucidate the statistical properties of 𝑑𝑑𝑖𝑖 , defined in (1), 
under certain sets of assumptions.  In particular, Neyman (1935) and Rubin (1974) demonstrated 
that assuming uniform randomization, the expectation of the naïve effect with respect to the 
randomization mechanism given the finite set Fis the true mean causal effect.  That is, 
 

𝐸𝐸𝑍𝑍(𝐷𝐷�|𝐹𝐹 ) = 𝑑̅𝑑 =
1
𝑁𝑁
�𝑑𝑑𝑖𝑖  

 
where 𝑑̅𝑑 is the average true causal effect for all EU’s in F (that is, a finite population mean 
treatment effect). Furthermore, it can be shown that  
 

𝐸𝐸Ω[𝐷𝐷�] = 𝐸𝐸Ω[𝐸𝐸𝑍𝑍(𝐷𝐷�|𝐹𝐹 )] = 𝐸𝐸Ω[𝑑̅𝑑] = 𝜇𝜇𝑑𝑑  
 
where the unconditional expectation is with respect to the distribution in (2) from which the 
finite set F is selected, and where 𝜇𝜇𝑑𝑑 = 𝜇𝜇𝑇𝑇 − 𝜇𝜇𝐶𝐶 . 
 Similarly,  
 

𝑣𝑣𝑣𝑣𝑣𝑣Ω[𝐷𝐷�] = 𝑣𝑣𝑣𝑣𝑣𝑣Ω[𝐸𝐸𝑍𝑍(𝐷𝐷�|𝐹𝐹 )] + 𝐸𝐸Ω[𝑣𝑣𝑣𝑣𝑣𝑣𝑍𝑍(𝐷𝐷�|𝐹𝐹 )] = 𝑣𝑣𝑣𝑣𝑣𝑣Ω�𝑑̅𝑑� + 𝐸𝐸Ω[𝑣𝑣𝑣𝑣𝑣𝑣𝑍𝑍(𝐷𝐷�|𝐹𝐹 )]. 
 
Notice that 𝑣𝑣𝑣𝑣𝑣𝑣Ω[𝐷𝐷�] ≥ 𝑣𝑣𝑣𝑣𝑣𝑣Ω�𝑑̅𝑑� (Dawid, 2000) with equality iff 𝐸𝐸Ω�𝑣𝑣𝑣𝑣𝑣𝑣𝑍𝑍�𝐷𝐷�|𝐹𝐹 �� = 0.  The latter 
condition simply means that all of the variability in the estimator𝐷𝐷� for 𝜇𝜇𝑑𝑑 is in the selection of the 
finite set F from the broader population.The inequality incorporates random variability resulting 
from the treatment assignment mechanism.  More of this discussion can be found in Gadbury 
(2001). 
 
3. Potential vs. Observable Linear Mixed Model (LMM) 

 Stroup (2011) developed a method termed What Would Fisher Do (WWFD) to correctly 
identify the components of the LMM.  This method was based on the contribution Fisher made 
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to a discussion paper authored by Yates (1935) in which Fisher distinguishes between two 
aspects of an experiment, the topographical or design aspect and the treatment structure.  Fisher 
noted that each aspect can be written down in such a way that the total degrees of freedom for 
the entire experiment are accounted for within each respective aspect.  Fisher goes on to explain 
that that the choice of an experimental design could be regarded as the choice of which elements 
from the two aspects are selected to correspond. Consider the two-sample CRD in which no 
technical error is present and in which a random effect which arises from the distinct application 
of the 𝑗𝑗𝑡𝑡ℎ  level of treatment to the 𝑖𝑖𝑡𝑡ℎ  EU is permitted.To apply Stroup’s WWFD method to the 
potential outcomes framework in a two-sample CRD, it may be helpful to consider the following 
plot plan: 

 
EU Part of Duplet Receiving T Part of Duplet Receiving C 
1 T C 
2 T C 
... ... ... 

N-1 T C 
N T C 

 
One can see that the potential outcomes framework for this design is constructed by 
conceptualizing two sets of responses, one set receiving T and the other set receiving C.  
Furthermore, each EU is represented in each set.  The topographical structure for the potential 
outcomes framework and corresponding degrees of freedom can then be laid out as follows: 
 

Topographical 
Source d.f. 
Set 2-1 
EU N-1 
Set*EU (2-1)*(N-1) 
Total 2N-1 

 
The analysis above was completely topographical.  The treatment structure and its corresponding 
degrees of freedom can be laid out as follows: 
 

Treatment 
Source d.f. 
Trt 2-1 
Parallels 2*(N-1) 
Total 2N-1 

 
where “Parallels” represent the number of times a level of treatment must be prepared to 
accommodate a given sample size.  In this case, there are two levels of treatment and each level 
of treatment must be prepared N times, therefore the degrees of freedom associated with 
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Parallels is 2*(N-1). Notice that the Topographical and Treatment aspects completely account for 
the total degrees of freedom in the experiment.   To combine these two aspects, we choose the 
degrees of freedom associated with Trt in the Treatment table to correspond to the degrees of 
freedom associated with Set in the topographical table.  Furthermore, we choose the degrees of 
freedom associated with Parallels in the Treatment table to correspond to the sum of the degrees 
of freedom associated with EU and Set*EU in the Topographical table.  The resulting combined 
ANOVA table is given below by replacing “Set” with “Trt” everywhere “Set” appears in the 
Topographical table: 
 

Topographical Trt Combined 
Source d.f. Source d.f. Source d.f. 
Set 2-1 Trt 2-1 Trt 2-1 
EU N-1 “parallels” 2(N-1) EU N-1 
Set*EU (2-1)*(N-1) Trt*EU (2-1)*(N-1) 
Total 2N-1 Total 2N-1 Total 2N-1 

 
Based on the combined ANOVA table above, the resulting potential LMM is  
 

𝑟𝑟𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝑠𝑠𝑖𝑖 + 𝜏𝜏𝑗𝑗 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖  
𝑖𝑖 = 1,2, … ,𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠;  𝑗𝑗 = 𝑇𝑇,𝐶𝐶 . 

 
where𝑠𝑠𝑖𝑖represents a random effect of the 𝑖𝑖𝑡𝑡ℎEU, 𝜏𝜏𝑗𝑗  represents a fixed effect of the 𝑗𝑗𝑡𝑡ℎ  level of 
treatment, and𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖  represents the random effect of the 𝑗𝑗𝑡𝑡ℎ  level of treatment applied to the 𝑖𝑖𝑡𝑡ℎ  EU.  
In a model assuming no technical error, 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖  should be considered the experimental error. 

Invoking the randomization mechanism to produce and observable data set effectively 
removes one-half of the data, under uniform randomization.  Again, it may be helpful to 
conceptualize the resulting observable data set with the following plot plan:   

 
EU Part of Duplet Receiving T Part of Duplet Receiving C 
1 T C 
2 T C 
... ... ... 

N-1 T C 
N T C 

 
Notice that each EU is now represented only once within a set instead of being represented in 
both sets so the “Set*EU” term is removed from the Topographical structure and replaced by an 
“EU(set)” term.  Also notice that the degrees of freedom associated with Parallels is reduced 
since each level of treatment need be prepared only n times instead of N, where 2n=N. This 
alters the Topographical and Treatment structures as follows: 
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Topographical Trt Combined 
Source d.f. Source d.f. Source d.f. 
Set 2-1 Trt 2-1 Trt 2-1 
EU(Set) N-1 

2(n-1) 
“parallels” 2(N-1) 

2(n-1) 
EU(Trt) N-1 

2(n-1) 
Set*EU (2-1)*(N-1) Trt*EU (2-1)*(N-1) 
Total 2N-1 

2n-1 
Total 2N-1 

2n-1 
Total 2N-1 

2n-1 
 
Based on this new Combined ANOVA table, the observable LMM can be written  
 

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝜏𝜏𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖  
𝑖𝑖 = 1,2, … ,𝑛𝑛𝑗𝑗 , 𝑗𝑗 = 𝑇𝑇,𝐶𝐶 

 
where 𝑛𝑛𝑗𝑗  is the number of EU’s per level of treatment, such that 𝑁𝑁 =  𝑛𝑛𝑇𝑇 +  𝑛𝑛𝐶𝐶 = 2𝑛𝑛in a 
balanced, two-sampleCRD (i.e., 𝑛𝑛𝑇𝑇 =  𝑛𝑛𝐶𝐶 = 𝑛𝑛) and 𝜀𝜀𝑖𝑖𝑖𝑖  is the “usual” error term in a two-sample 
CRD. 

A direct relationship between the potential and observable models can be established by 
defining  

 
𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖  

 
Note that there is not enough experimental material in the observable model framework to 
estimate all effects of interestspecified in the potential model.  In order to estimate a treatment 
effect in the observable model,only the linear combination of the variancecomponents of subject 
and subject-by-treatment effectscan be estimated.  If the potential framework were feasible, both 
the variance of the subject effect and the variance of the subject-by-treatment effect would be 
estimable.  Even for thissimple design, relating the quantities in an observable model to those in 
the potential model takes some thought. Still, it is necessary to highlight the information that gets 
lost as one moves from potential to observable data and, thus, what quantities in a model become 
non-estimable. The relationship between the potential model and observable model is not as 
explicit in more complicated designs. 

Using Stroup’s WWFD method, we adapted it to the potential outcomes framework and 
arrived at the following potential LMM in a matched-pairs design: 

 
𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝑏𝑏𝑖𝑖 + 𝑠𝑠𝑗𝑗 (𝑖𝑖) + 𝜏𝜏𝑘𝑘 + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑗𝑗 (𝑖𝑖) 𝑘𝑘                                            (3) 

 𝑖𝑖 = 1,2, … ,𝐵𝐵 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝;  𝑗𝑗 = 1,2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝; 𝑘𝑘 = 𝑇𝑇,𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
 

where𝑏𝑏𝑖𝑖  represents a random effect of the 𝑖𝑖𝑡𝑡ℎpair (i.e.-block), 𝑠𝑠𝑗𝑗 (𝑖𝑖)represents a random effect of 
the 𝑗𝑗𝑡𝑡ℎ  subject within the 𝑖𝑖𝑡𝑡ℎ  block,  𝜏𝜏𝑘𝑘  represents a fixed effect of the 𝑘𝑘𝑡𝑡ℎ  level of treatment,  
𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖  represents a random effect of the 𝑘𝑘𝑡𝑡ℎ  level of treatment being applied to the 𝑖𝑖𝑡𝑡ℎ  block and 
𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗 (𝑖𝑖) represents a random effect of the 𝑘𝑘𝑡𝑡ℎ  level of treatment being applied to the 𝑗𝑗𝑡𝑡ℎ  subject 
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with the 𝑖𝑖𝑡𝑡ℎ  block and should be considered experimental error.In a matched-pairs analysis, the 
𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗 (𝑖𝑖) term represents a random subject-by-treatment or subject-by-control effect.  As in Wilk 
and Kempthorne (1955), we assume no technical error. 
 Recall that observable data are conceptualized as being generated from potential 
outcomes by invoking a randomization mechanism that effectively removes one-half of the data.  
In this design, two of the four total potential outcomes within each pair are effectively removed 
so that there is one subject receiving treatment T and one receiving treatment C. By considering 
what information is “lost” by invoking the randomization mechanism, we use the potential LMM 
as a template to arrive at the observable LMM.  This process is an important step in the 
appropriate estimation of effects in the observable model as misspecification of the model in 
SAS PROC GLIMMIX has been demonstrated to alter both model effect estimation and 
inference (Boykin et al., 2010).  In this particular design, if each EU is permitted only one 
observable response instead of simultaneous potential responses, then we “lose” multiple 
observations per subject and a subject effect may no longer be estimated.  Similarly, by invoking 
a randomization mechanism, only one level of each treatment is observable per pair and a block-
by-treatment effect is no longer estimable.  Thus by confounding these effects and defining the 
non-estimable portions of the potential LMM to be residual error, the resulting observable LMM 
in a matched-pairs design is 
 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝑏𝑏𝑖𝑖 + 𝜏𝜏𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  
 𝑖𝑖 = 1,2, … ,𝐵𝐵 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝;  𝑗𝑗 = 1;  𝑘𝑘 = 𝑇𝑇,𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

 
where𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  is taken to be experimental error.  The notation used here allows for straightforward 
extension to a block design with more than two subjects per block. 

A direct relationship between the observable model and the potential model may be 
established by defining  

 
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑗𝑗 (𝑖𝑖) + 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑗𝑗 (𝑖𝑖) 𝑘𝑘  

 
In a matched-pairs design, the 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  term represents the random treatment error or the random 
control error.Under the assumption of unit-treatment additivity,𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑗𝑗 (𝑖𝑖)𝑘𝑘 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖, 𝑗𝑗, 
and 

𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑗𝑗 (𝑖𝑖) 
 
irrespective of the level of treatment assigned to the 𝑗𝑗𝑡𝑡ℎ  EU. More discussion of this is in the next 
section. 
 
4. An Illustration using Simulation 
Illustration Using a Constructed Data Set 
 The results presented here are for a matched-pairs design, although we have extended the 
methods presented here to other designs as well.  In order to demonstrate the utility of these 
techniques, we present here a constructed data example comparing the effects of two different 
types of laser surgery on visual acuity.   This constructed data example is based loosely on the 
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analysis of an actual dataset (KARNS, 1993).  The measure of visual acuity in the actual study 
was a count of correctly identified characters from a visual acuity chart.  Here, the data were 
constructed to represent a change in the Logarithm of the Minimum Angle of Resolution 
(LogMAR) scores over a three-month period.  Imagine that 𝑁𝑁 = 100 EU’s suffering from 
diabetic neuropathy were randomly assigned to receive red-krypton laser surgery in one eye and 
blue-green argon laser surgery in the other.  Responses are the change in visual acuity measured 
from base-line to three months post-surgery.  We simulated a potential dataset based on the 
potential model given in (3)where𝑏𝑏𝑖𝑖  represents the random effect of the 𝑖𝑖𝑡𝑡ℎEU, 𝑠𝑠𝑗𝑗 (𝑖𝑖)represents the 
random effect of the 𝑗𝑗𝑡𝑡ℎeye within the 𝑖𝑖𝑡𝑡ℎEU,  𝜏𝜏𝑘𝑘  represents a fixed effect of the 𝑘𝑘𝑡𝑡ℎ  level of 
laser surgery with 𝑇𝑇 = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝐶𝐶 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,  𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖  represents a random effect of the 𝑘𝑘𝑡𝑡ℎ  
level of laser surgery being applied to the 𝑖𝑖𝑡𝑡ℎEU and 𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗 (𝑖𝑖) represents a random effect of the 𝑘𝑘𝑡𝑡ℎ  
level of laser surgery being applied to the 𝑗𝑗𝑡𝑡ℎeye with the 𝑖𝑖𝑡𝑡ℎEU.  𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗 (𝑖𝑖)should be considered 
experimental error in the potential LMM.  The distributional assumptions on random effects are 
as follows: 
 

𝑏𝑏𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝑏𝑏2) 
𝑠𝑠𝑗𝑗 (𝑖𝑖)~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝑠𝑠2) 

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝑏𝑏𝑏𝑏2 )                                                                 (4) 

�
𝑠𝑠𝑠𝑠𝑗𝑗 (𝑖𝑖)𝑇𝑇
𝑠𝑠𝑠𝑠𝑗𝑗 (𝑖𝑖)𝐶𝐶

�~𝑀𝑀𝑀𝑀𝑀𝑀 ��0
0� ,�

𝜎𝜎𝑠𝑠𝑠𝑠2 0
0 𝜎𝜎𝑠𝑠𝑠𝑠2

�� 

𝑏𝑏𝑖𝑖 , 𝑠𝑠𝑗𝑗 (𝑖𝑖), 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖  and 𝑠𝑠𝑠𝑠𝑗𝑗 (𝑖𝑖)𝑘𝑘  are mutually independent. 
 

Table 3(i) gives the values used in simulation. 
 Once a potential dataset had been constructed, an observable constructed dataset was 
produced by randomly selecting one potential response per eye within an EU to be the 
observable response for that eye.  Table 1 gives the estimates and standard errors of identifiable 
quantities based on these two constructed datasets.  Corresponding estimates of the same 
identifiable quantities in the potential and observable models should not be expected to be 
identical since the values of the observable estimates incorporate random variability resulting 
from the treatment assignment mechanism and will depend upon the particular realization of a 
vector of 𝑍𝑍𝑖𝑖’s. 
 
The Quantity of Interest 

Define the true causal effect for this experimental design, 𝑑𝑑𝑖𝑖𝑖𝑖 , to be the difference in the 
potential response of the 𝑗𝑗𝑡𝑡ℎ  eye in the 𝑖𝑖𝑡𝑡ℎ  EUundergoing laser surgery with Krypton and the 
potential response of the 𝑗𝑗𝑡𝑡ℎ  eye in the 𝑖𝑖𝑡𝑡ℎ  EUundergoinglaser surgery with Argon.  From the 
linear model above,  
 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 = (𝜏𝜏𝑇𝑇 − 𝜏𝜏𝐶𝐶) + (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) + �𝑠𝑠𝑠𝑠𝑗𝑗 (𝑖𝑖) 𝑇𝑇 − 𝑠𝑠𝑠𝑠𝑗𝑗 (𝑖𝑖) 𝐶𝐶�. 
 

The EU effect and eye-within-EU effect  are removed by virtue of the fact that under thepotential 
outcomes framework,  both potential responses occur simultaneously in the same EU 
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and the same eye-within-EU.  Based on the model assumptions given in (4) and the simulation 
values in Table 3 (i), notice that  
 

𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑖𝑖 � = 2𝜎𝜎𝑏𝑏𝑏𝑏2 + (𝜎𝜎𝑠𝑠𝑠𝑠2 + 𝜎𝜎𝑠𝑠𝑠𝑠2 ) = 0.030. 
 
As noted in Table 1, the estimate of 𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑖𝑖 � from the constructed potential dataset is given by 
 

𝑣𝑣𝑎𝑎�𝑟𝑟�𝑑𝑑𝑖𝑖𝑖𝑖 � = 2𝜎𝜎�𝑏𝑏𝑏𝑏2 + (𝜎𝜎�𝑠𝑠𝑠𝑠2 + 𝜎𝜎�𝑠𝑠𝑠𝑠2 ) = 0.0276.                                       (5) 
 
 Contrast these results with that of the naïve difference for this experimental design, 𝐷𝐷𝑖𝑖 , 
defined to be the difference in responses between the eye in the 𝑖𝑖𝑡𝑡ℎEUactually assigned to 
receive laser surgery with Krypton and the eye in the 𝑖𝑖𝑡𝑡ℎEUactually assigned to receive laser 
surgery with Argon.  Since the naïve difference is defined to be across eyes, the eye-within-EU 
effect is not removed.  That is  
 

𝐷𝐷𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑖𝑖𝑗𝑗 ′ = 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑖𝑖𝑗𝑗 ′ 𝐶𝐶
= (𝜏𝜏𝑇𝑇 − 𝜏𝜏𝐶𝐶) + �𝑠𝑠𝑗𝑗 (𝑖𝑖) − 𝑠𝑠𝑗𝑗 ′ (𝑖𝑖)� + (𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖) + �𝑠𝑠𝑠𝑠𝑗𝑗 (𝑖𝑖) 𝑇𝑇 − 𝑠𝑠𝑠𝑠𝑗𝑗 ′ (𝑖𝑖) 𝐶𝐶�. 

 
Based on the relevant model assumptions given in (4) and the simulation values given in Table 3 
(i), 
 

𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖) = 2𝜎𝜎𝑠𝑠2 + 2𝜎𝜎𝑏𝑏𝑏𝑏2 + (𝜎𝜎𝑠𝑠𝑠𝑠2 + 𝜎𝜎𝑠𝑠𝑠𝑠2 ) = 2𝜎𝜎𝑠𝑠2 + 𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑖𝑖 � = 0.032                           (6) 
 
Also notice that  
 

𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖) ≥ 𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑖𝑖 �.                                                           (7) 
 

so that 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖) is an estimable upper bound for 𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑖𝑖 �.  Using theobservable constructed 
dataset estimates in Table 1 to estimate 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖) yields the following estimate: 

Estimates:  Potential Constructed Data  Estimates:  Observable Constructed Data 
Fixed Effects Estimate Std. Error  Fixed Effects Estimate Std. Error 

Argon -0.1223 0.0159  Argon -0.1229 0.0153 
Krypton -0.0314 0.0154  Krypton -0.0378 0.0167 

Difference 0.0909 0.0158  Difference 0.0851 0.0174 

Random Effects Var.  Estimate Std. Error  Random Effects Var.  Estimate Std. Error 

EU 0.0112 0.0028  EU 0.0105 0.0028 
Eye(EU) 0.0017 0.0004   

Argon Error 
 

0.0130 
 

0.0030 EU*Trt 0.0112 0.0018  
Eye*Argon 0.0041 0.0007   

Krypton Error 
 

0.0173 
 

0.0034 Eye*Krypton 0.0012 0.0004  

Table 1.Estimates of Effect of Laser Therapy based on Constructed Datasets.  Values represent estimates and standard 
errors of estimable quantities from the potential and observable constructed datasets. 
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𝑣𝑣𝑎𝑎�𝑟𝑟(𝐷𝐷𝑖𝑖) = 𝜎𝜎�𝑒𝑒𝑒𝑒2 + 𝜎𝜎�𝑒𝑒𝑒𝑒2 = 0.0313.                                             (8) 
 

Notice that 𝑣𝑣𝑎𝑎�𝑟𝑟(𝐷𝐷𝑖𝑖) ≥ 𝑣𝑣𝑎𝑎�𝑟𝑟�𝑑𝑑𝑖𝑖𝑖𝑖 � and the estimates from the constructed datasets confirm the 
relationship between 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖) and 𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑖𝑖 � given in (7). 

In addition to the estimate of 𝜎𝜎𝑠𝑠2, 𝜎𝜎�𝑠𝑠2, from the potential constructed dataset given in 
Table 1, it would seem reasonable to compute a second estimate of 𝜎𝜎𝑠𝑠2,𝜎𝜎�𝑠𝑠2 , based on the 
relationship between 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖) and 𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑖𝑖 � given in (6).  This second estimate is given as 
follows: 
 

𝜎𝜎�𝑠𝑠2 =
𝑣𝑣𝑎𝑎�𝑟𝑟(𝐷𝐷𝑖𝑖) − 𝑣𝑣𝑎𝑎�𝑟𝑟�𝑑𝑑𝑖𝑖𝑖𝑖 �

2
= 0.0019 

 
Recall that the estimated value of 𝜎𝜎𝑠𝑠2 from the potential constructed dataset given in Table 1 is 
𝜎𝜎�𝑠𝑠2 = 0.0017.  The discrepancy between 𝜎𝜎�𝑠𝑠2 and 𝜎𝜎�𝑠𝑠2 can be attributed to variability in the 
observable dataset resulting from invoking the randomization mechanism since the selection of 
different sets of potential responses as the observable responses will yield different values of 
𝑣𝑣𝑎𝑎�𝑟𝑟(𝐷𝐷𝑖𝑖) and thus different values of 𝜎𝜎�𝑠𝑠2. 

Some general remarks about (7) are noteworthy regarding the matched-pairs 
experimental design. If the assumption of unit-treatment additivity holds, then neither a pair-by-
treatment nor subject-by-treatment effect exist (i.e.—each effect is considered to be 0 with 
variance equal to 0).  This implies that the variability of the true causal effect, 𝑑𝑑𝑖𝑖𝑖𝑖 , is 0, that is, it 
is a constant effect in the population.  Thus any variability of the observable, naïve effect, 𝐷𝐷𝑖𝑖 , is 
only a function of the variability due to subjects within a pair, 𝜎𝜎𝑠𝑠2.  If the assumption of unit-
treatment additivity does not hold, then the variability 𝐷𝐷𝑖𝑖  may be thought of as a linear 
combination of the variability of subjects within a pair, 𝜎𝜎𝑠𝑠2, the variability arising from treatment 
being applied to a certain pair, 𝜎𝜎𝑏𝑏𝑏𝑏2 , and the variability arising from a treatment being applied to a 
subject within a pair, 𝜎𝜎𝑠𝑠𝑠𝑠2  or 𝜎𝜎𝑠𝑠𝑠𝑠2 .  Under the circumstances of perfect matching, (i.e.--𝜎𝜎𝑠𝑠2 = 0), 
the variance of  𝐷𝐷𝑖𝑖  is a linear combination of 𝜎𝜎𝑏𝑏𝑏𝑏2 ,  𝜎𝜎𝑠𝑠𝑠𝑠2 , and 𝜎𝜎𝑠𝑠𝑠𝑠2 .  It is under this circumstance (i.e., 
perfect matching) that the variances of the observable, naïve effect and the true causal effect are 
equal. Otherwise, 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖) > 𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑖𝑖 �. How well subjects are matched cannot be assessed in 
this design. 

 
Simulation Method 

We conclude by confirming the analytical results from the constructed data sets with 
simulations.  Potential outcomes data were simulated assuminga matched-pairsdesign.  A total of 
𝑆𝑆 = 100simulated datasetswere generated for each of the following numbers ofblocks of size 
𝑛𝑛 = 2:  𝐵𝐵 = 10,𝐵𝐵 = 30,𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 = 100.  The resulting number of responses for one simulated 
dataset in the potential outcome framework is given by 2𝑁𝑁 = 2 ∙ 𝐵𝐵𝐵𝐵 = 4𝐵𝐵 and the resulting 
number of EU’s in one simulated observable experiment was given by 𝑁𝑁 = 𝐵𝐵𝐵𝐵 = 2𝐵𝐵.  SAS 
PROC GLIMMIX was then utilized on the simulated data to obtain REML estimates of:  (i) the 
difference in fixed effects between the two potential outcomes within a subject,  (ii) the variances 
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of random effects in the potential model, and (iii) the variance of the difference in the two 
potential outcomes, denoted 𝑣𝑣𝑣𝑣𝑣𝑣(𝑑𝑑).   

Next, one-half of the data were removed to simulate observed data under uniformly 
random treatment assignment for a matched-pairs design.  PROC GLIMMIX was again utilized 
on the observed data to obtain REML estimates of:  (i) the difference in fixed effects between the 
two treatment groups, (ii) the variances of identifiable random effects in the observable model, 
(iii) the variance of the linear combination of non-identifiable random effects that constitute the 
residual term or error variance in the observable data model, and (iv) the variance of the paired 
difference in observable data, denoted 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷).Then the empirical mean of the 𝑆𝑆 =
100simulations was compared to the simulated value for each of the respective estimates.  
Simulation estimates were considered reasonable if the true simulated value fell with three (3) 
empirical sampling standard errors of the empirical mean of the 𝑆𝑆 = 100 simulated datasets.  
Simulations were performed under the sameset of assumptions given in (4).  As with the 
constructed datasets, Tables2 and 3 below give the values of the simulation parameters used in 
this study. 
 
Simulation Results 

Figure 1 illustrates the result in (7).  The dotted lines represent the true value used in the 
simulation.  The upper line corresponds to the simulated value of 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖) and the lower line 
corresponds to the simulated value of 𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑖𝑖 �.  The difference between the upper and lower 
dotted line should be equal to 2𝜎𝜎𝑠𝑠2, as demonstrated in (6).  Indeed, in these particular 
simulations, 𝜎𝜎𝑠𝑠2 = 0.001, thus the distance between the two dotted lines can be seen to be 
2𝜎𝜎𝑠𝑠2 = 2 ∙ 0.001 = 0.002.  Notice that when𝐵𝐵 = 100, the true simulatedvalue of 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖) is 
within two empirical standard errors of the empirical mean of the 𝑆𝑆 = 100 estimates.  This 
would indicate that the REML estimates from the observable model are reasonable estimates of 
the sum of the variances of the confounded components from the potential model. 

The results displayed in Figure 1 are typical of the results from these simulations.  Tables 
2 and 3give more specific results of all effects of interest based on 𝑆𝑆 = 100 simulated data sets.  
Values represent the empirical mean and empirical sampling standard error of estimates across 
the 𝑆𝑆 = 100 data sets.  Table 2 gives results for the fixed treatment effect for the model fit to 
both potential and observable data, Table 3 shows the values used in simulation in the potential 
model and the results for the random effects in the observable model.  In all cases, as the block 
sizeincreased from 10 to 30 to 100, the empirical sampling variability of the effect estimates 
around the true simulatedvalue decreased, as expected.  For most effects under consideration, the 
true simulated value is within one or twoempirical standard errors of the empirical mean.  True 
simulated values of all effects were within three empirical standard errors. 
 
5. Summary 
In this paper we showed that a linear mixed model applied to a potential outcome framework can 
be of pedagogical value in investigating estimability of treatment heterogeneity.   By 
conceptualizing the true causal effect as a random variable with expectation 𝜏𝜏𝑇𝑇 − 𝜏𝜏𝐶𝐶  and some 
finite variance, we permit the treatment effect to vary according to subject and estimate 
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thecomponent of the overall variability that is due to the subject-by-treatment effect. One benefit 
of 

 
 
 

 
using potential outcomes to conceptualize this problem from a mixed model perspective is 
thatwe can clearly detail the “loss” of information that occurs when moving from a potential 
model to an observable data model.  In a matched-pairs design, we described which effects were 
confounded when a treatment assignment mechanism is employed to generate observable data 
from potential outcomes.  Furthermore, we demonstrated that the error effects in the observable 
data model are linear combinations of confounded effects from the potential model. 
 As one moves to a generalized block design, assigning more than one EU per block to 
receive each 𝑇𝑇 and 𝐶𝐶in the observable model facilitates the computation of more information 
about treatment heterogeneity within blocks. Cross-over designs that allow for “individual 
effects” to be observed provide information about individual treatment heterogeneity under 
different and perhaps more plausible assumptions from these other designs. Details about 
treatment heterogeneity in block designs and cross-over designs will be reported elsewhere.  

In cases where treatment heterogeneity is suspected, it would be prudent to investigate 
this in addition to estimating a mean effect before a claim of the superiority of one treatment 
over another is established (Longford, 1999). LMM’s are commonly used to estimate mean 
effects in various designs. As such, it is essentially “without cost” (in the sense that no new data 
are needed) to state the model that would be fit to potential outcomes data. A comparison 
between the two models delineates the information about causal effects that is lost in moving 
from potential to observable data, and what assumptions about non-estimable quantities (or 
design modifications) are needed to evaluate treatment heterogeneity in observable data. 
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Figure1. Empirical sampling distribution of estimated 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖).  Dotted lines represent 
values used in the simulation design.   

228

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/15



We would like to thank the anonymous referee for critically reviewing the manuscript and 
offering helpful improvements, all of which we tried to incorporate.  

229

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/15



 
 
 
 
 
 
 

 

 

 

 

  

Fixed  
Effect 

(Potential) 

 
Simulated 

Value 

 
 

2N (𝑆𝑆 = 100) 

 
Average 

(𝑆𝑆 = 100) 

Sampling 
Std. Error 

 Fixed 
Effect 

(Observable) 

 
Simulated 

Value 

 
 

N (𝑆𝑆 = 100) 

 
Average 

(𝑆𝑆 = 100) 

Sampling 
Std. Error 

𝜏𝜏𝑇𝑇 − 𝜏𝜏𝐶𝐶  0.075 40 0.0709 .0061  𝜏𝜏𝑇𝑇 − 𝜏𝜏𝐶𝐶  0.075 20 0.0724 .0067 
  120 0.0738 .0031    60 0.0738 .0033 
  400 0.0762 .0018    200 0.0764 .0020 

Potential Model 
Component 

Simulation Value 

𝜇𝜇 0.0025 
𝜏𝜏𝑇𝑇  -0.0275 
𝜏𝜏𝐶𝐶  -0.1025 

𝜎𝜎𝑏𝑏2 0.0075 

𝜎𝜎𝑏𝑏𝑏𝑏2  0.0120 

𝜎𝜎𝑠𝑠2 0.0010 

𝜎𝜎𝑠𝑠𝑠𝑠2  0.0045 

𝜎𝜎𝑠𝑠𝑠𝑠2  0.0015 

𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑖𝑖 � = 2𝜎𝜎𝑏𝑏𝑏𝑏2 + 𝜎𝜎𝑠𝑠𝑠𝑠2 + 𝜎𝜎𝑠𝑠𝑠𝑠2  0.0300 

(i) 

Observable  
Variance 

Component 

Observable Simulation 
Value 

 
N 

(𝑆𝑆 = 100) 

Observable 
Average 

(𝑆𝑆 = 100) 

Observable Sampling  
Std. Error 

𝜎𝜎𝑏𝑏2 0.0075 20 0.0082 .0007 
  60 0.0070 .0005 
  200 0.0073 .0002 
     

Ctrl Error= (0.012 + 0.001 + 0.0015) = 0.0145 20 0.0125 .0009 
(𝜎𝜎𝑏𝑏𝑏𝑏2 + 𝜎𝜎𝑠𝑠2 + 𝜎𝜎𝑠𝑠𝑠𝑠2 )  60 0.0147 .0005 

  200 0.0151 .0003 
     
     

Trt Error= (0.012 + 0.001 + 0.0045) = 0.0175 20 0.0174 .0012 
(𝜎𝜎𝑏𝑏𝑏𝑏2 + 𝜎𝜎𝑠𝑠2 + 𝜎𝜎𝑠𝑠𝑠𝑠2 )  60 0.0184 .0007 

  200 0.0176 .0003 
     
     

𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖) = 2𝜎𝜎𝑠𝑠2 + 𝑣𝑣𝑣𝑣𝑣𝑣(𝑑𝑑𝑖𝑖𝑖𝑖 ) (2 ∙ 0.001) + 0.030 = 0.032 20 0.0315 .0017 
  60 0.0332 .0009 
  200 0.0327 .0004 

(ii) 

Table 2.  Fixed Treatment Effects.  Values represent the average and empirical sampling standard error of treatment effect 
estimates across 𝑆𝑆 = 100simulations in both the potential and observable data models for B=10, 30, and 100 
blocks of size 2 EU’s. 

Table 3.Random Effects.(i)  Values used in simulation for the potential model.  (ii)  Values represent the average and 
empirical sampling standard error of the variance estimates for random effects in the observable model across 
𝑆𝑆 = 100simulations for B=10, 30, and 100 blocks of size 2 EU’s. 
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