33 research outputs found

    Anemone bleaching impacts the larval recruitment success of an anemone-associated fish

    Get PDF
    In marine environments, mutualisms such as those between corals or sea anemones and their algal symbionts (Symbiodiniaceae) play a key role for supporting surrounding biodiversity. However, as the breakdown of the mutualism between corals and/or anemones and Symbiodiniaceae (i.e. bleaching) become increasingly frequent and severe, the risk of losing the additional species that rely on them may also increase. While the effects of anemone bleaching on the biology and ecology of anemone-associated fishes have been the subject of recent research, relatively little is known about the impacts that anemone bleaching might have on the recruitment of larval fish. Here, we report that climate change-induced anemone bleaching impairs a secondary mutualism between anemones and an anemone-associated fish species, the threespot dascyllus (Dascyllus trimaculatus). Field-based monitoring over a 1-year period showed anemones that bleached experienced decreased recruitment of larval D. trimaculatus compared to those that did not bleach, with abundances of newly settled D. trimaculatus three times lower in bleached versus unbleached anemones. A visual choice experiment showed that this pattern is associated with fish being less attracted to bleached anemones, and a predation experiment demonstrated that fish associated with bleached anemones experienced higher mortality compared to those associated with unbleached anemones. These results suggests that the decreased recruitment of D. trimaculatus observed in bleached anemones may be driven by hampered pre-settlement (habitat selection) and post-settlement (survival to predation) processes for larval D. trimaculatus in bleached hosts. This study highlights the risk of cascading mutualism breakdowns in coral reefs as conditions deteriorate and stresses the importance of protecting these mutualisms for the maintenance of coral reef biodiversity

    Exposure to agricultural pesticide impairs visual lateralization in a larval coral reef fish

    Get PDF
    Lateralization, i.e. the preferential use of one side of the body, may convey fitness benefits for organisms within rapidly-changing environments, by optimizing separate and parallel processing of different information between the two brain hemispheres. In coral reef-fishes, the movement of larvae from planktonic to reef environments (recruitment) represents a major life-history transition. This transition requires larvae to rapidly identify and respond to sensory cues to select a suitable habitat that facilitates survival and growth. This \u27recruitment\u27 is critical for population persistence and resilience. In aquarium experiments, larval Acanthurus triostegus preferentially used their right-eye to investigate a variety of visual stimuli. Despite this, when held in in situ cages with predators, those larvae that previously favored their left-eye exhibited higher survival. These results support the "brain\u27s right-hemisphere" theory, which predicts that the right-eye (i.e. left-hemisphere) is used to categorize stimuli while the left-eye (i.e. right-hemisphere) is used to inspect novel items and initiate rapid behavioral-responses. While these experiments confirm that being highly lateralized is ecologically advantageous, exposure to chlorpyrifos, a pesticide often inadvertently added to coral-reef waters, impaired visual-lateralization. This suggests that chemical pollutants could impair the brain function of larval fishes during a critical life-history transition, potentially impacting recruitment success

    Boat noise prevents soundscape-based habitat selection by coral planulae

    Full text link
    Understanding the relationship between coral reef condition and recruitment potential is vital for the development of effective management strategies that maintain coral cover and biodiversity. Coral larvae (planulae) have been shown to use certain sensory cues to orient towards settlement habitats (e.g. the odour of live crustose coralline algae - CCA). However, the influence of auditory cues on coral recruitment, and any effect of anthropogenic noise on this process, remain largely unknown. Here, we determined the effect of protected reef (MPA), exploited reef (non-MPA) soundscapes, and a source of anthropogenic noise (boat) on the habitat preference for live CCA over dead CCA in the planula of two common Indo-Pacific coral species (Pocillopora damicornis and Acropora cytherea). Soundscapes from protected reefs significantly increased the phonotaxis of planulae of both species towards live CCA, especially when compared to boat noise. Boat noise playback prevented this preferential selection of live CCA as a settlement substrate. These results suggest that sources of anthropogenic noise such as motor boat can disrupt the settlement behaviours of coral planulae. Acoustic cues should be accounted for when developing management strategies aimed at maximizing larval recruitment to coral reefs

    Targeted census of lionfishes (Scorpaenidae) reveals high densities in their native range

    No full text
    Indo-Pacific lionfishes generally exhibit cryptic behaviours and so can be missed when conducting non-targeted surveys. Here, the authors report the results from targeted surveys of lionfish at Moorea, French Polynesia. Lionfish from three species (Pterois antennata, Pterois radiata, Dendrochirus biocellatus) were observed at a mean density of 267 individuals ha−1. This is substantially higher than previous estimates from the same area (Moorea) and represents the highest reported density of lionfishes from their Pacific range. Overall, this study highlights the importance of targeted survey techniques for detecting cryptic species on coral reefs

    Targeted census of lionfishes (Scorpaenidae) reveals high densities in their native range

    No full text
    Indo-Pacific lionfishes generally exhibit cryptic behaviours and so can be missed when conducting non-targeted surveys. Here, the authors report the results from targeted surveys of lionfish at Moorea, French Polynesia. Lionfish from three species (Pterois antennata, Pterois radiata, Dendrochirus biocellatus) were observed at a mean density of 267 individuals ha−1. This is substantially higher than previous estimates from the same area (Moorea) and represents the highest reported density of lionfishes from their Pacific range. Overall, this study highlights the importance of targeted survey techniques for detecting cryptic species on coral reefs

    Developing and adult reef fish show rapid light‐induced plasticity in their visual system

    No full text
    The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in “constant night”. Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life

    Development of dim-light vision in the nocturnal reef fish family Holocentridae. I: Retinal gene expression

    No full text
    Developmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become nocturnal. While these ecological transitions are well documented, little is known about the ontogeny of nocturnal reef fish vision. Here, we used transcriptomics to investigate visual development in 12 representative species from both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes), in the nocturnal coral reef fish family, Holocentridae. Results revealed that the visual systems of holocentrids are initially well adapted to photopic conditions with pre-settlement larvae having high levels of cone opsin gene expression and a broad cone opsin gene repertoire (8 genes). At reef settlement, holocentrids started to invest more in their scotopic visual system, and compared with adults, showed upregulation of genes involved in cell differentiation/proliferation. By adulthood, holocentrids had well developed scotopic vision with high levels of rod opsin gene expression, reduced cone opsin gene expression and repertoire (1-4 genes) and upregulated phototransduction genes. Finally, although the two subfamilies shared similar ecologies across development, their visual systems diverged after settlement, with Myripristinae investing more in scotopic vision than Holocentrinae. Hence, both ecology and phylogeny are likely to determine the development of the holocentrid visual system

    Development of dim-light vision in the nocturnal reef fish family Holocentridae. II: Retinal morphology

    No full text
    International audienceOntogenetic changes in the habitats and lifestyles of animals are often reflected in their visual systems. Coral reef fishes start life in the shallow open ocean but inhabit the reef as juveniles and adults. Alongside this change in habitat, some species also change lifestyles and become nocturnal. However, it is not fully understood how the visual systems of nocturnal reef fishes develop and adapt to these significant ecological shifts over their lives. Therefore, we used a histological approach to examine visual development in the nocturnal coral reef fish family, Holocentridae. We examined 7 representative species spanning both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes). Pre-settlement larvae showed strong adaptation for photopic vision with high cone densities and had also started to develop a multibank retina (i.e. multiple rod layers), with up to two rod banks present. At reef settlement, holocentrids showed greater adaptation for scotopic vision, with higher rod densities and higher summation of rods onto the ganglion cell layer. By adulthood, they had well-developed scotopic vision with a highly rod-dominated multibank retina comprising 5-17 rod banks and enhanced summation of rods onto the ganglion cell layer. Although the ecological demands of the two subfamilies were similar throughout their lives, their visual systems differed after settlement, with Myripristinae showing more pronounced adaptation for scotopic vision than Holocentrinae. Thus, it is likely that both ecology and phylogeny contribute to the development of the holocentrid visual system
    corecore