269 research outputs found

    The use of the indentation test for studying the solidification behaviour of different semicrystalline polymers during injection moulding

    Get PDF
    An in-line method for monitoring the solidification process during injection molding of semicrystalline polymers (demonstrated previously in J. Appl. Polym. Sci.2003, 89, 3713) is based on a simple device, where an additional ejector pin is pushed on the injection molded part at different times during the solidification phase. The ‘indentation depth profile’, i.e., residual deformation as a function of time, was obtained and allowed to determine the evolution of the solidification front in the mold as a function of the cooling time. The present work shows the reliability and the powerfulness of the aforementioned method for a large variety of different semicrystalline polymers (PET, PBT, polyamide-6 PA6, isotactic poly(propylene) iPP) characterized also by different molecular weight and/or nucleating agents. The results show that the indentation test may be considered as a ‘predictive’ tool to qualitatively and quantitatively compare the solidification process of different polymers and polymer grades during injection molding

    Electron-radiation interaction in a Penning trap: beyond the dipole approximation

    Full text link
    We investigate the physics of a single trapped electron interacting with a radiation field without the dipole approximation. This gives new physical insights in the so-called geonium theory.Comment: 12 pages, RevTeX, 6 figures, Approved for publication in Phys. Rev.

    Improved α4\alpha^4 Term of the Electron Anomalous Magnetic Moment

    Full text link
    We report a new value of electron g2g-2, or aea_e, from 891 Feynman diagrams of order α4\alpha^4. The FORTRAN codes of 373 diagrams containing closed electron loops have been verified by at least two independent formulations. For the remaining 518 diagrams, which have no closed lepton loop, verification by a second formulation is not yet attempted because of the enormous amount of additional work required. However, these integrals have structures that allow extensive cross-checking as well as detailed comparison with lower-order diagrams through the renormalization procedure. No algebraic error has been uncovered for them. The numerical evaluation of the entire α4\alpha^4 term by the integration routine VEGAS gives 1.7283(35)(α/π)4-1.7283 (35) (\alpha/\pi)^4, where the uncertainty is obtained by careful examination of error estimates by VEGAS. This leads to ae=1159652175.86(0.10)(0.26)(8.48)×1012a_e = 1 159 652 175.86 (0.10) (0.26) (8.48) \times 10^{-12}, where the uncertainties come from the α4\alpha^4 term, the estimated uncertainty of α5\alpha^5 term, and the inverse fine structure constant, α1=137.0360003(10)\alpha^{-1} = 137.036 000 3 (10), measured by atom interferometry combined with a frequency comb technique, respectively. The inverse fine structure constant α1(ae)\alpha^{-1} (a_e) derived from the theory and the Seattle measurement of aea_e is 137.03599883(51)137.035 998 83 (51).Comment: 64 pages and 10 figures. Eq.(16) is corrected. Comments are added after Eq.(40

    ELENA: An Upgrade to the Antiproton Decelerator

    Get PDF
    A small decelerator ring with electron cooling is proposed to produce dense antiproton beams at very low energies. The ring should be installed between the existing AD and the experimental area

    Solution of the two identical ion Penning trap final state

    Get PDF
    We have derived a closed form analytic expression for the asymptotic motion of a pair of identical ions in a high precision Penning trap. The analytic solution includes the effects of special relativity and the Coulomb interaction between the ions. The existence and physical relevance of such a final state is supported by a confluence of theoretical, experimental and numerical evidence.Comment: 5 pages and 2 figure

    Antiproton-Hydrogen annihilation at sub-kelvin temperatures

    Get PDF
    The main properties of the interaction of ultra low-energy antiprotons (E106% E\le10^{-6} a.u.) with atomic hydrogen are established. They include the elastic and inelastic cross sections and Protonium (Pn) formation spectrum. The inverse Auger process (Pn+eH+pˉPn+e \to H+\bar{p}) is taken into account in the framework of an unitary coupled-channels model. The annihilation cross-section is found to be several times smaller than the predictions made by the black sphere absorption models. A family of pˉH\bar{p}H nearthreshold metastable states is predicited. The dependence of Protonium formation probability on the position of such nearthreshold S-matrix singularities is analysed. An estimation for the HHˉH\bar{H} annihilation cross section is obtained.Comment: latex.tar.gz file, 22 pages, 9 figure

    Shot-noise-limited spin measurements in a pulsed molecular beam

    Get PDF
    Heavy diatomic molecules have been identified as good candidates for use in electron electric dipole moment (eEDM) searches. Suitable molecular species can be produced in pulsed beams, but with a total flux and/or temporal evolution that varies significantly from pulse to pulse. These variations can degrade the experimental sensitivity to changes in spin precession phase of an electri- cally polarized state, which is the observable of interest for an eEDM measurement. We present two methods for measurement of the phase that provide immunity to beam temporal variations, and make it possible to reach shot-noise-limited sensitivity. Each method employs rapid projection of the spin state onto both components of an orthonormal basis. We demonstrate both methods using the eEDM-sensitive H state of thorium monoxide (ThO), and use one of them to measure the magnetic moment of this state with increased accuracy relative to previous determinations.Comment: 12 pages, 6 figure

    Quantum Logic with a Single Trapped Electron

    Get PDF
    We propose the use of a trapped electron to implement quantum logic operations. The fundamental controlled-NOT gate is shown to be feasible. The two quantum bits are stored in the internal and external (motional) degrees of freedom.Comment: 7 Pages, REVTeX, No Figures, To appear in Phys. Rev.

    One-Particle Measurement of the Antiproton Magnetic Moment

    Get PDF
    \DeclareRobustCommand{\pbar}{\HepAntiParticle{p}{}{}\xspace} \DeclareRobustCommand{\p}{\HepParticle{p}{}{}\xspace} \DeclareRobustCommand{\mup}{μp\mu_{p}{}{}\xspace} \DeclareRobustCommand{\mupbar}{\mu_{\pbar}{}{}\xspace} \DeclareRobustCommand{\muN}{μN\mu_N{}{}\xspace For the first time a single trapped \pbar is used to measure the \pbar magnetic moment {\bm\mu}_{\pbar}. The moment {\bm\mu}_{\pbar} = \mu_{\pbar} {\bm S}/(\hbar/2) is given in terms of its spin S{\bm S} and the nuclear magneton (\muN) by \mu_{\pbar}/\mu_N = -2.792\,845 \pm 0.000\,012. The 4.4 parts per million (ppm) uncertainty is 680 times smaller than previously realized. Comparing to the proton moment measured using the same method and trap electrodes gives \mu_{\pbar}/\mu_p = -1.000\,000 \pm 0.000\,005 to 5 ppm, for a proton moment μp=μpS/(/2){\bm{\mu}}_{p} = \mu_{p} {\bm S}/(\hbar/2), consistent with the prediction of the CPT theorem.Comment: 4 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1201.303
    corecore