3,387 research outputs found

    Initial conditions, Discreteness and non-linear structure formation in cosmology

    Get PDF
    In this lecture we address three different but related aspects of the initial continuous fluctuation field in standard cosmological models. Firstly we discuss the properties of the so-called Harrison-Zeldovich like spectra. This power spectrum is a fundamental feature of all current standard cosmological models. In a simple classification of all stationary stochastic processes into three categories, we highlight with the name ``super-homogeneous'' the properties of the class to which models like this, with P(0)=0P(0)=0, belong. In statistical physics language they are well described as glass-like. Secondly, the initial continuous density field with such small amplitude correlated Gaussian fluctuations must be discretised in order to set up the initial particle distribution used in gravitational N-body simulations. We discuss the main issues related to the effects of discretisation, particularly concerning the effect of particle induced fluctuations on the statistical properties of the initial conditions and on the dynamical evolution of gravitational clustering.Comment: 28 pages, 1 figure, to appear in Proceedings of 9th Course on Astrofundamental Physics, International School D. Chalonge, Kluwer, eds N.G. Sanchez and Y.M. Pariiski, uses crckapb.st pages, 3 figure, ro appear in Proceedings of 9th Course on Astrofundamental Physics, International School D. Chalonge, Kluwer, Eds. N.G. Sanchez and Y.M. Pariiski, uses crckapb.st

    A dynamical classification of the range of pair interactions

    Full text link
    We formalize a classification of pair interactions based on the convergence properties of the {\it forces} acting on particles as a function of system size. We do so by considering the behavior of the probability distribution function (PDF) P(F) of the force field F in a particle distribution in the limit that the size of the system is taken to infinity at constant particle density, i.e., in the "usual" thermodynamic limit. For a pair interaction potential V(r) with V(r) \rightarrow \infty) \sim 1/r^a defining a {\it bounded} pair force, we show that P(F) converges continuously to a well-defined and rapidly decreasing PDF if and only if the {\it pair force} is absolutely integrable, i.e., for a > d-1, where d is the spatial dimension. We refer to this case as {\it dynamically short-range}, because the dominant contribution to the force on a typical particle in this limit arises from particles in a finite neighborhood around it. For the {\it dynamically long-range} case, i.e., a \leq d-1, on the other hand, the dominant contribution to the force comes from the mean field due to the bulk, which becomes undefined in this limit. We discuss also how, for a \leq d-1 (and notably, for the case of gravity, a=d-2) P(F) may, in some cases, be defined in a weaker sense. This involves a regularization of the force summation which is generalization of the procedure employed to define gravitational forces in an infinite static homogeneous universe. We explain that the relevant classification in this context is, however, that which divides pair forces with a > d-2 (or a < d-2), for which the PDF of the {\it difference in forces} is defined (or not defined) in the infinite system limit, without any regularization. In the former case dynamics can, as for the (marginal) case of gravity, be defined consistently in an infinite uniform system.Comment: 12 pages, 1 figure; significantly shortened and focussed, additional references, version to appear in J. Stat. Phy

    Diffusion, super-diffusion and coalescence from single step

    Full text link
    From the exact single step evolution equation of the two-point correlation function of a particle distribution subjected to a stochastic displacement field \bu(\bx), we derive different dynamical regimes when \bu(\bx) is iterated to build a velocity field. First we show that spatially uncorrelated fields \bu(\bx) lead to both standard and anomalous diffusion equation. When the field \bu(\bx) is spatially correlated each particle performs a simple free Brownian motion, but the trajectories of different particles result to be mutually correlated. The two-point statistical properties of the field \bu(\bx) induce two-point spatial correlations in the particle distribution satisfying a simple but non-trivial diffusion-like equation. These displacement-displacement correlations lead the system to three possible regimes: coalescence, simple clustering and a combination of the two. The existence of these different regimes, in the one-dimensional system, is shown through computer simulations and a simple theoretical argument.Comment: RevTeX (iopstyle) 19 pages, 5 eps-figure

    Gravitational Dynamics of an Infinite Shuffled Lattice: Particle Coarse-grainings, Non-linear Clustering and the Continuum Limit

    Full text link
    We study the evolution under their self-gravity of infinite ``shuffled lattice'' particle distributions, focussing specifically on the comparison of this evolution with that of ``daughter'' particle distributions, defined by a simple coarse-graining procedure. We consider both the case that such coarse-grainings are performed (i) on the initial conditions, and (ii) at a finite time with a specific additional prescription. In numerical simulations we observe that, to a first approximation, these coarse-grainings represent well the evolution of the two-point correlation properties over a significant range of scales. We note, in particular, that the form of the two-point correlation function in the original system, when it is evolving in the asymptotic ``self-similar'' regime, may be reproduced well in a daughter coarse-grained system in which the dynamics are still dominated by two-body (nearest neighbor) interactions. Using analytical results on the early time evolution of these systems, however, we show that small observed differences between the evolved system and its coarse-grainings at the initial time will in fact diverge as the ratio of the coarse-graining scale to the original inter-particle distance increases. The second coarse-graining studied, performed at a finite time in a specified manner, circumvents this problem. It also makes more physically transparent why gravitational dynamics from these initial conditions tends toward a ``self-similar'' evolution. We finally discuss the precise definition of a limit in which a continuum (specifically Vlasov-like) description of the observed linear and non-linear evolution should be applicable.Comment: 21 pages, 8 eps figures, 2 jpeg figures (available in high resolution at http://pil.phys.uniroma1.it/~sylos/PRD_dec_2006/

    Stochastic interacting particle systems out of equilibrium

    Full text link
    This paper provides an introduction to some stochastic models of lattice gases out of equilibrium and a discussion of results of various kinds obtained in recent years. Although these models are different in their microscopic features, a unified picture is emerging at the macroscopic level, applicable, in our view, to real phenomena where diffusion is the dominating physical mechanism. We rely mainly on an approach developed by the authors based on the study of dynamical large fluctuations in stationary states of open systems. The outcome of this approach is a theory connecting the non equilibrium thermodynamics to the transport coefficients via a variational principle. This leads ultimately to a functional derivative equation of Hamilton-Jacobi type for the non equilibrium free energy in which local thermodynamic variables are the independent arguments. In the first part of the paper we give a detailed introduction to the microscopic dynamics considered, while the second part, devoted to the macroscopic properties, illustrates many consequences of the Hamilton-Jacobi equation. In both parts several novelties are included.Comment: 36 page

    Gravitational dynamics of an infinite shuffled lattice: early time evolution and universality of non-linear correlations

    Full text link
    In two recent articles a detailed study has been presented of the out of equilibrium dynamics of an infinite system of self-gravitating points initially located on a randomly perturbed lattice. In this article we extend the treatment of the early time phase during which strong non-linear correlations first develop, prior to the onset of ``self-similar'' scaling in the two point correlation function. We establish more directly, using appropriate modifications of the numerical integration, that the development of these correlations can be well described by an approximation of the evolution in two phases: a first perturbative phase in which particles' displacements are small compared to the lattice spacing, and a subsequent phase in which particles interact only with their nearest neighbor. For the range of initial amplitudes considered we show that the first phase can be well approximated as a transformation of the perturbed lattice configuration into a Poisson distribution at the relevant scales. This appears to explain the ``universality'' of the spatial dependence of the asymptotic non-linear clustering observed from both shuffled lattice and Poisson initial conditions.Comment: 11 pages, 11 figures, shortened introductory sections and other minor modifications, version to appear in Phys. Rev.

    Galaxy distribution and extreme value statistics

    Full text link
    We consider the conditional galaxy density around each galaxy, and study its fluctuations in the newest samples of the Sloan Digital Sky Survey Data Release 7. Over a large range of scales, both the average conditional density and its variance show a nontrivial scaling behavior, which resembles to criticality. The density depends, for 10 < r < 80 Mpc/h, only weakly (logarithmically) on the system size. Correspondingly, we find that the density fluctuations follow the Gumbel distribution of extreme value statistics. This distribution is clearly distinguishable from a Gaussian distribution, which would arise for a homogeneous spatial galaxy configuration. We also point out similarities between the galaxy distribution and critical systems of statistical physics

    Gravitational force in an infinite one-dimensional Poisson distribution

    Full text link
    We consider the statistical properties of the gravitational field F in an infinite one-dimensional homogeneous Poisson distribution of particles, using an exponential cut-off of the pair interaction to control and study the divergences which arise. Deriving an exact analytic expression for the probability density function (PDF) P(F), we show that it is badly defined in the limit in which the well known Holtzmark distribution is obtained in the analogous three-dimensional case. A well defined P(F) may, however, be obtained in the infinite range limit by an appropriate renormalization of the coupling strength, giving a Gaussian form. Calculating the spatial correlation properties we show that this latter procedure has a trivial physical meaning. Finally we calculate the PDF and correlation properties of differences of forces (at separate spatial points), which are well defined without any renormalization. We explain that the convergence of these quantities is in fact sufficient to allow a physically meaningful infinite system limit to be defined for the clustering dynamics from Poissonian initial conditions.Comment: 9 pages, minor changes, final version published in Phys. Rev.

    Very large scale correlations in the galaxy distribution

    Full text link
    We characterize galaxy correlations in the Sloan Digital Sky Survey by measuring several moments of galaxy counts in spheres. We firstly find that the average counts grows as a power-law function of the distance with an exponent D= 2.1+- 0.05 for r in [0.5,20] Mpc/h and D = 2.8+-0.05 for r in [30,150] Mpc/h. In order to estimate the systematic errors in these measurements we consider the counts variance finding that it shows systematic finite size effects which depend on the samples sizes. We clarify, by making specific tests, that these are due to galaxy long-range correlations extending up to the largest scales of the sample. The analysis of mock galaxy catalogs, generated from cosmological N-body simulations of the standard LCDM model, shows that for r<20 Mpc/h the counts exponent is D~2.0, weakly dependent on galaxy luminosity, while D=3 at larger scales. In addition, contrary to the case of the observed galaxy samples, no systematic finite size effects in the counts variance are found at large scales, a result that agrees with the absence of large scale, r~100 Mpc/h, correlations in the mock catalogs. We thus conclude that the observed galaxy distribution is characterized by correlations, fluctuations and hence structures, which are larger, both in amplitude and in spatial extension, than those predicted by the standard model LCDM of galaxy formation.Comment: 6 pages, 7 figures to be published in Europhysics Letter
    • 

    corecore