From the exact single step evolution equation of the two-point correlation
function of a particle distribution subjected to a stochastic displacement
field \bu(\bx), we derive different dynamical regimes when \bu(\bx) is
iterated to build a velocity field. First we show that spatially uncorrelated
fields \bu(\bx) lead to both standard and anomalous diffusion equation. When
the field \bu(\bx) is spatially correlated each particle performs a simple
free Brownian motion, but the trajectories of different particles result to be
mutually correlated. The two-point statistical properties of the field
\bu(\bx) induce two-point spatial correlations in the particle distribution
satisfying a simple but non-trivial diffusion-like equation. These
displacement-displacement correlations lead the system to three possible
regimes: coalescence, simple clustering and a combination of the two. The
existence of these different regimes, in the one-dimensional system, is shown
through computer simulations and a simple theoretical argument.Comment: RevTeX (iopstyle) 19 pages, 5 eps-figure